• Title/Summary/Keyword: Navier-Stokes solution

Search Result 241, Processing Time 0.025 seconds

A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Yongsik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1737-1751
    • /
    • 2013
  • An efficient and stable point collocation scheme based on a meshfree method is studied for the stationary incompressible Navier-Stokes equations. We describe the diffuse derivatives associated with the moving least square method. Using these diffuse derivatives, we propose a point collocation method to fit in solving the Navier-Stokes equations which improves the stability of the direct point collocation scheme. The convergence of the numerical solution is investigated from numerical examples. The driven cavity ow and the backward facing step ow are implemented for the reliability of the scheme. Also, the viscous ow on complicated geometry is successfully calculated such as the ow past a circular cylinder in duct.

NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATION

  • CHOI, YONGHO;JEONG, DARAE;LEE, SEUNGGYU;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.103-121
    • /
    • 2015
  • In this paper, we briefly review and describe a projection algorithm for numerically computing the two-dimensional time-dependent incompressible Navier-Stokes equation. The projection method, which was originally introduced by Alexandre Chorin [A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), pp. 745-762], is an effective numerical method for solving time-dependent incompressible fluid flow problems. The key advantage of the projection method is that we do not compute the momentum and the continuity equations at the same time, which is computationally difficult and costly. In the projection method, we compute an intermediate velocity vector field that is then projected onto divergence-free fields to recover the divergence-free velocity. Numerical solutions for flows inside a driven cavity are presented. We also provide the source code for the programs so that interested readers can modify the programs and adapt them for their own purposes.

Optimal Control of steady Incompressible Navier-Stokes Flows (Navier-Stokes 유체의 최적 제어)

  • Bark, Jai-Hyeong;Hong, Soon-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.661-674
    • /
    • 2002
  • The objective of this study is to develop efficient numerical method to enable solution of optimal control problems of Navier-Stokes flows and to apply these technique to the problem of viscous drag minimization on a bluff body by controlling boundary velocities on the surface of the body. In addition to the industrial importance of the drag reduction problem, it serves as a model for other more complex flow optimization settings, and allows us to study, modify, and improve the behavior of the optimal control methods proposed here. The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function represents the rate at which energy is dissipated in the fluid. This study shows how reduced Hessian successive quadratic programming method, which avoid converging the flow equations at each iteration, can be tailored to these problems.

REGULARITY OF SOLUTIONS OF 3D NAVIER-STOKES EQUATIONS IN A LIPSCHITZ DOMAIN FOR SMALL DATA

  • Jeong, Hyo Suk;Kim, Namkwon;Kwak, Minkyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.753-760
    • /
    • 2013
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a bounded Lipschitz do-main under Dirichlet boundary condition. We present by a very simple argument that a strong solution exists globally when the product of $L^2$ norms of the initial velocity and the gradient of the initial velocity and $L^{p,2}$, $p{\geq}4$ norm of the forcing function are small enough. Our condition is scale invariant and implies many typical known global existence results for small initial data including the sharp dependence of the bound on the volumn of the domain and viscosity. We also present a similar result in the whole domain with slightly stronger condition for the forcing.

EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY

  • Anh, Cung The;Thanh, Dang Thi Phuong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.379-403
    • /
    • 2018
  • In this paper we study the first initial boundary value problem for the 3D Navier-Stokes-Voigt equations with infinite delay. First, we prove the existence and uniqueness of weak solutions to the problem by combining the Galerkin method and the energy method. Then we prove the existence of a compact global attractor for the continuous semigroup associated to the problem. Finally, we study the existence and exponential stability of stationary solutions.

GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A THIN PERIODIC DOMAIN

  • Kwak, Min-Kyu;Kim, Nam-Kwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a thin periodic domain. We present a simple proof that a strong solution exists globally in time when the initial velocity in $H^1$ and the forcing function in $L^p$(0,${\infty}$;$L^2$), $2{\leq}p{\leq}{\infty}$ satisfy certain condition. This condition is basically similar to that by Iftimie and Raugel[7], which covers larger and larger initial data and forcing functions as the thickness of the domain ${\epsilon}$ tends to zero.

GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A LONG PERIODIC DOMAIN

  • Kim, Nam-Kwon;Kwak, Min-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.315-324
    • /
    • 2012
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a long periodic domain. We show by a simple argument that a strong solution exists globally in time when the initial velocity in $H^1$ and the forcing function in $L^p$([0; T);$L^2$), T > 0, $2{\leq}p{\leq}+\infty$ satisfy a certain condition. This condition common appears for the global existence in thin non-periodic domains. Larger and larger initial data and forcing functions satisfy this condition as the thickness of the domain $\epsilon$ tends to zero.

A BOUNDARY CONTROL PROBLEM FOR VORTICITY MINIMIZATION IN TIME-DEPENDENT 2D NAVIER-STOKES EQUATIONS

  • KIM, HONGCHUL
    • Korean Journal of Mathematics
    • /
    • v.23 no.2
    • /
    • pp.293-312
    • /
    • 2015
  • We deal with a boundary control problem for the vorticity minimization, in which the ow is governed by the time-dependent two dimensional incompressible Navier-Stokes equations. We derive a mathematical formulation and a process for an appropriate control along the portion of the boundary to minimize the vorticity motion due to the ow in the fluid domain. After showing the existence of an optimal solution, we derive the optimality system for which optimal solutions may be determined. The differentiability of the state solution in regard to the control parameter shall be conjunct with the necessary conditions for the optimal solutions.

TEMPORAL AND SPATIAL DECAY RATES OF NAVIER-STOKES SOLUTIONS IN EXTERIOR DOMAINS

  • Bae, Hyeong-Ohk;Jin, Bum-Ja
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.547-567
    • /
    • 2007
  • We obtain spatial-temporal decay rates of weak solutions of incompressible flows in exterior domains. When a domain has a boundary, the pressure term yields difficulties since we do not have enough information on the pressure term near the boundary. For our calculations we provide an idea which does not require any pressure information. We also estimated the spatial and temporal asymptotic behavior for strong solutions.

Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data

  • Kim, Namkwon
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.53-56
    • /
    • 2013
  • We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough($u{\in}W^{2,p}$, p>2), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient of the corresponding solution of the Euler equations belongs to certain Orlicz spaces. As a corollary, if the initial vorticity is bounded and small enough, we obtain a sublinear rate of convergence.