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REGULARITY OF SOLUTIONS OF 3D NAVIER-STOKES

EQUATIONS IN A LIPSCHITZ DOMAIN FOR SMALL DATA

Hyo Suk Jeong, Namkwon Kim, and Minkyu Kwak

Abstract. We consider the global existence of strong solutions of the
3D incompressible Navier-Stokes equations in a bounded Lipschitz do-
main under Dirichlet boundary condition. We present by a very simple
argument that a strong solution exists globally when the product of L2

norms of the initial velocity and the gradient of the initial velocity and
Lp,2, p ≥ 4 norm of the forcing function are small enough. Our condition
is scale invariant and implies many typical known global existence results
for small initial data including the sharp dependence of the bound on the

volumn of the domain and viscosity. We also present a similar result in
the whole domain with slightly stronger condition for the forcing.

1. Introduction

We consider the initial boundary value problem of the incompressible Navier-
Stokes equations,

ut − ν∆u + (u · ∇)u +∇p = f,(1)

∇ · u = 0,(2)

in a bounded domain Ω ⊂ R
3 with Lipschitz boundary ∂Ω or in R

3 itself. Here
u denotes the velocity of a homogeneous, viscous incompressible fluid, f is the
density of force per unit volume, p denotes the pressure, and ν is the kinematic
viscosity. We require that the forcing function f and the initial data u0 satisfy

∇ · f = ∇ · u0 = 0.

As a boundary condition, we use

u|∂Ω = 0

when Ω is a bounded domain.

By the classical results of Leray and Hopf ([12], [18]), there exists a global
weak solution of the Navier-Stokes equations if the initial data is in L2 and
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satisfies (2). It is also known that the solution becomes necessarily strong
(regular) for all regular data in two dimensional domain. But for the case
Ω ⊂ R

3, global strong solutions have only been guaranteed for small initial
data and small forcing term (see [2], [7], [8], [9], [13], [14], [23], [24], [25], [27]
and references therein). The same is true for solutions in a negative Besov space
(see [5], [22] and references therein) and for different boundary conditions (see
[6], [10], [11], [15], [16], [17], [19], [21] and reference therein).

We here provide with some simple argument for global existence for small
data in a Lipschitz domain, which recovers many known such results. Our
argument also holds true in the whole R

3. Concretely, we show the global
existence of strong solutions if the initial data and the forcing function satisfy

‖u0‖
2‖∇u0‖

2 + 4ν(4−4p)/pλ(4−3p)/p‖f‖4p,0 ≤
ν4

K4
, 4 ≤ p ≤ ∞

for an interpolation constantK, which are independent of |Ω|. Here, |Ω| denotes
the volume of Ω, λ is the first eigenvalue of the Stokes operator, and

‖f‖pp,0 =

∫

∞

0

‖f‖pL2(t)dt.

This condition is scale invariant under the Navier-Stokes scaling,

v → bv(abt, ax), ν →
b

a
ν, λ → a2λ, f → ab2f(abt, ax).

It implies that the H1 norm of the initial velocity need not to be small for the
global regularity. It also recovers that if the L2 norm of the gradient of the
initial velocity is small enough compared with a sixth power of the volume of
Ω, global existence is guaranteed when the forcing term vanishes.

This work has been done partially while the author is visiting the University
of Minnesota for a sabbatical year and he is grateful to the School of Mathe-
matics for their warm hospitalities and specially to Prof. G. R. Sell, Vladimir
Sverak and Luan Hoang.

2. Regularity

We denote

H = {u ∈ L2(Ω) | ∇ · u = 0, u · n(∂Ω, ·) = 0}

when Ω is a bounded domain and

H = {u ∈ L2(R3) | ∇ · u = 0}

when Ω = R
3. Also, V ≡ H∩W 1,2

0 (Ω) when Ω is bounded and V ≡ H∩W 1,2(Ω)
when Ω = R

3. We remark that if Ω is a bounded Lipschitz domain, ‖∇u‖ is an
equivalent norm for V due to the Poincaré type inequality. For convenience’s
sake, we also denote ‖ · ‖p = ‖ · ‖Lp , ‖ · ‖2 = ‖ · ‖. P is the Leray projection
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of L2(Ω) = L2(Ω,R3) into H . Now, applying the Leray projection, we can
reformulate (1) in the following evolutionary equation on the Hilbert space V ,

(3) ut + νAu +B(u, u) = Pf,

where Au = −P△u, and the bilinear form B(u, v) = P(u · ∇)v. We will be
interested in solutions of (3) with the initial data u0 and f = f(t) satisfying

(4) u0 ∈ V, f(t) ∈ L∞([0,∞), H).

Theorem 2.1. Let Ω be a bounded Lipschitz domain in R
3. The Navier-Stokes

evolutionary equation (3) has a solution

u ∈ C0([0,∞), H) ∩ L∞((0,∞), V )

whenever u0 and f satisfy

(5) ‖u0‖
2‖∇u0‖

2 + 4ν
4−4p

p λ
4−3p

p ‖f‖4p,0 ≤
ν4

K4

for some p ∈ [4,∞]. Here, K is a scale invariant embedding constant, λ is the

first eigenvalue of the Stokes operator, and ‖ ·‖p,0 = ‖ ·‖Lp((0,∞),L2). Moreover,

in this case

(6) ‖∇u‖2(t) ≤ ‖∇u0‖
2 + 4ν

2−2p
p λ

2−p
p ‖f‖2p,0

for all t > 0.

Proof. Since u0 ∈ H1 and f ∈ L2(0, T ;L2) for all T > 0, there exists a local
in time unique strong solution, u corresponding to u0 and f . Suppose that
this solution blows up in a finite time. This means that there exists a maximal
time of existence, T ∗ > 0 at which the solution quits to belong H1. Now, let
us restrict ourself t < T ∗. By taking the scalar product of (3) with u and using
the fact that 〈B(u, u), u〉 = 0, we find that

(7)
d

dt
‖u‖2 + 2ν‖∇u‖2 ≤ 2‖f‖‖u‖.

Now, we borrow the following inequality for a bounded Lipschitz domain
from [3] and [1]

(8) ‖u‖∞ ≤ K‖∇u‖1/2 ‖Au‖1/2

to get

|〈B(u, u), Au〉| =

∣

∣

∣

∣

∫

u · ∇u · Au

∣

∣

∣

∣

≤ ‖u‖L∞‖∇u‖ ‖Au‖

≤ K‖∇u‖3/2 ‖Au‖3/2

≤ K‖u‖1/2‖∇u‖1/2‖Au‖2.

Here, in the last line, we use the inequality

(9) ‖∇u‖2 = −

∫

u · Au ≤ ‖u‖‖Au‖.
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Note that K is a scaling invariant constant which may depend on the Lipschitz
norm of ∂Ω. Taking the scalar product of (3) with Au and using the above
estimate, we obtain

(10)
d

dt
‖∇u‖2 + 2ν‖Au‖2 ≤ 2‖f‖‖Au‖+K(‖u‖ ‖∇u‖)1/2‖Au‖2.

Next, we multiply (7) by ‖∇u‖2 and (10) by ‖u‖2 and adding them to have

d

dt
(‖u‖2‖∇u‖2) + 2ν‖∇u‖4 + 2ν‖u‖2‖Au‖2

≤ 2‖f‖‖u‖(‖∇u‖2 + ‖u‖‖Au‖) +K(‖u‖ ‖∇u‖)1/2‖u‖2‖Au‖2.(11)

By the Hölder inequality and (9), we have

2‖f‖‖u‖(‖∇u‖2 + ‖u‖‖Au‖) ≤ 4‖f‖ ‖u‖2‖Au‖

≤ ν‖u‖2‖Au‖2 + ν‖∇u‖4 +
4

ν3λ2
‖f‖4.

Denoting G = ‖u‖2‖∇u‖2, we thus arrive at the differential inequality

d

dt
G+ νλG ≤

[

KG1/4 − ν
]

‖u‖2‖Au‖2 +
4

ν3λ2
‖f‖4.

By (5), KG(0)1/4 − ν ≤ 0. And, since G(t) is continuous for t < T ∗, there
exists a maximal T1 ≤ T ∗ such that KG1/4 − ν ≤ 0 on [0, T1). Then we have
by the Grönwall inequality

G(t) ≤ G(0)e−νλt +
4

ν3λ2

∫ t

0

‖f‖4eνλ(s−t)ds

< G(0) + 4ν(4−4p)/pλ(4−3p)/p‖f‖4p,0, 4 ≤ p ≤ ∞

for t < T1 (Equality cannot hold in the last line). This implies that KG(t)1/4−

ν < 0 for all t < T1 by (5) and thus T1 = T ∗. Now, using G(t) ≤ ν4

K4 for t < T ∗,
we have from (10)

d

dt
‖∇u‖2 +

ν

2
‖Au‖2 ≤

2

ν
‖f‖2, t < T ∗.

By the Grönwall inequality and the inequality

λ‖∇u‖2 ≤ ‖Au‖2,

we have finally

‖∇u‖2(t) ≤ ‖∇u‖2(0)e−
νλ
2
t +

2

ν

∫ t

0

‖f‖2e
νλ
2
(s−t)ds

≤ ‖∇u‖2(0) + 4ν
2−2p

p λ
2−p
p ‖f‖2p,0

for all t < T ∗. This leads a contradiction and we conclude T ∗ = +∞. The
above inequality shows (6) then for all t > 0. �
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Remark. 1. The condition (5) is in a sense a condition of smallness of the initial
data and external force. However, this condition allows for initial data with
large H1 norm provided that the L2 norm of the initial data is small enough.
In particular, when f = 0, the above theorem tells that even for initial data
with large H1 norm, there exists a globally regular solution if ‖u0‖ is small
enough compared with ν2‖∇u0‖

−1.
2. Although we show the above theorem under Dirichlet boundary condition

for a bounded domain, it still holds for a cylindrical domain under mixed no-slip
and periodic boundary condition.

3. The condition p ≥ 4 could be relaxed to p ≥ 2 if we just want to obtain
the global regularity of the solution. However, we may lose the simple scale
invariant bound of H1 norm of the solution in this approach.

The above theorem is also in consistent with the previously known global
regularity result for small initial data. For example, the case p = 2 and Ω being
C2 is reduced to Theorems 9.3 and 9.4 in [7]. It also gives the dependence of
the bound on the volumn of the domain. The following corollary reveals this,
which is a consequence of a simple embedding theorem.

Corollary 2.2. Given initial data u0 ∈ H1 ∩H and 4 ≤ p ≤ ∞. There exists

a scaling invariant constant C such that if

‖∇u0‖ ≤ Cν|Ω|−1/6, ‖f‖p,0 ≤ Cν(2p−1)/p|Ω|−(3p−4)/6p,

there exists a globally regular solution of (3).

Proof. Since λ‖u0‖
2 ≤ ‖∇u0‖

2, the condition (5) is satisfied if

‖∇u0‖
4 ≤

ν4

5K4
λ, ‖f‖4p,0 ≤

ν(8p−4)/pλ(3p−4)/p

5K4
.

Meanwhile, since

λ = inf
v∈D(A1/2)

‖∇v‖2

‖v‖2
,

the scaling x → |Ω|1/3x gives λ(Ω) = |Ω|−2/3λ(Ω0). Here, Ω0 is a scaling of Ω
with unit volume. Further, λ(Ω0) ≥ λD(Ω0), the first Dirichlet eigenvalue by
the above definition. Thus, denoting the ball of unit volume by B, λ(Ω0) ≥
λD(B) by symmetrization. Putting these together and defining C suitably, we
finish the proof. �

The above corollary in particular tells that when p = 2, both of the bounds
grows like |Ω|−1/6.

Under slightly stronger condition on the external force, an analogy of the
above theorem holds on the whole of R3.

Theorem 2.3. When Ω = R
3, (3) has a solution

u ∈ C0([0,∞), H) ∩ L∞((0,∞), V )
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whenever u0 and f satisfy

(12) ‖u0‖
2‖∇u0‖

2 +
2

ν

(

‖u0‖+

∫

∞

0

‖f‖

)2∫ ∞

0

‖f‖2 ≤
ν4

K
.

Further,

(13) ‖∇u‖2(t) ≤ ‖∇u0‖
2 +

1

ν

∫ t

0

‖f‖2

for all t > 0.

Proof. Exactly by the same argument as in the previous theorem, (7) and
(10) holds in this case, too. In particular, the inequality (8) reduces to the
Gargliardo-Nirenberg inequality in this case and is well-known. Dividing by
2‖u‖, we reduce (7) further to

d

dt
‖u‖ ≤ ‖f‖.

Integrating the above inequality, we have

(14) ‖u‖(t) ≤ ‖u0‖+

∫ t

0

‖f‖.

Meanwhile, from (7) and (10), we again have (11). To manipulate (11) further,
we estimate the forcing term as follows.

2‖f‖‖u‖(‖∇u‖2 + ‖u‖‖Au‖) ≤ ν‖∇u‖4 + ν‖u‖2‖Au‖2 +
2

ν
‖f‖2‖u‖2.

Then, (11) is reduced to

d

dt
G ≤

[

KG1/4 − ν
]

‖u‖2‖Au‖2 +
2

ν
‖f‖2‖u‖2.

Here, G = ‖u‖2‖∇u‖2 as before. Again by the continuation argument and the
Grönwall inequality, G(t) ≤ G(0) if

G(0) +
2

ν

∫

∞

0

‖f‖2‖u‖2 ≤
ν4

K4
.

By (14), the above inequality is satisfied under (12). Finally, once G(t) ≤
G(0) ≤ (ν/K)4, from (10),

d

dt
‖∇u‖2 + ν‖Au‖2 ≤ ‖f‖‖Au‖

≤
1

ν
‖f‖2 + ν‖Au‖2.

Integrating the above inequality, we recover (13) and finish the proof. �
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