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Abstract

The objective of this study is to develop efficient numerical method to enable solution of optimal control
problems of Navier-Stokes flows and to apply these technique to the problem of viscous drag minimization on a
bluff body by controlling houndary velocities on the surface of the body. In addition to the industrial importance of
the drag reduction problem, it serves as a model for other more complex flow optimization settings, and allows us
to study, modify, and improve the behavior of the optimal control methods proposed here.

The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function
represents the rate at which energy is dissipated in the fluid. This study shows how reduced Hessian successive
quadratic programming method, which avold converging the flow equations at each iteration, can be tailored to
these problems.

Keywords - optimal control, navier-stokes flow, SQP method, reduced hessian method, newton method,
quasi—newton method, suction, injection
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1. Introduction

Control of the flow by suction and injection is
one of the most promising method for controlling
the boundary layer.” The first trial in this
regard was reported in 1940.2 They found
that the drag on a cylinder could be reduced
by sucking fluid out through a slit on the back
side of the cylinder. The feasibility of using
suction holes on a aircraft wings as a means
of delaying seperation and reducing drag was
demonstrated as early as the 1950s.”® The
extreme example in this regard is the Northrop-
21 flight test program. The concept of boundary
layer control led flight engineers to expect
that the performance of the aircraft could be
greatly improved, particularly with respect to
range and ecomomics of operation. Over 200
flight tests of two X-21 aircraft were performed
to investigate laminar flow control on swept
wings and to demonstrate its technical feasibility.
Many thin and closely spaced spanwise suction
slots were set on the surfaces of the X-21 wing.
Suction was applied at each slit to maintain
laminar flow, based on readings from flow monitors
that provided information on stability of the
boundary layer. Laminar flow had been maintained
as high as Reynolds number 4.73x10", and
airplane performance(as measured by the lift-
to-drag ratio) was increased by 25%.

Until recently, flow control problems have been
mainly solved by trial-and-error parameter studies
based on experiments, analytical solutions, or
numerical simulations. Reviews of such approaches
can be found in references [22) and (23). But
these approaches cannot be guaranteed to obtain
a minimum drag solution. The problem is in-
herently one in optimization of systems governed
by partial differential equations, in particular the
Navier-Stokes equations. To rigorously guarantee
a optimum solution, one must consider the op-
timality conditions stemming from the optimization

of
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formulation of the drag mimimization problem,
and develop methods for converging to solutions
of these optimality conditions. Indeed, as has
been pointed out by Gad-el-Hak in a recent

. 6).
review -

“Delaying transition using suction is a mature
technology, where most of the remaining problems
are in the maintainability and reliability of suction
surfaces, and the optimization of suction rate and
distribution.”

Unfortunately, the problem of optimizing Navier-
Stokes flows is very challenging. It leads to
optimization problems with tens of thousands
(or more) of nonlinear constraints., which until
recently have been out of the reach of nonlinear
numerical optimization methods. Furthermore,
commonly-available computers have not been
powerful enough to warrant such an approach.

However, with the development of Sequential
Quadratic Programming(SQP) methods for solving
nonlinearly-constrained optimization problems,
and with the emergence of high-end workstations
capable of performing tens of millions of operations
per second, we are at a point at which it becomes
possible to contemplate the formulation and
solution of optimal flow control problems tkat
are governed by Navier-Stokes equations. The
SQP method is based on the iterative formulation
and solution of quadratic programming subproblems.
However, direct application of SQP methods to
flow control problems is still not possible due
to the size and complexity of the problem. These
techniques must be tailored to the structure of
flow problems. The goal of this research is to
develop SQP method that exploit the structure
and nature of optimization problems constrained
by discrete Navier-Stokes equations, and to
demonstrate the success of these methods by
applying them to optimal boundary control pro—
blems in two dimensions. In this work we limit



ourselves to time-independent flows, so that the
optimal control is found for steady-state cond-
itions.

In the flow control optimization problem, we
may have tens of thousands of variables and
constraints. By eliminating the flow constraints
(discrete form of the Navier-Stokes equations)
at each control iteration, as well as the flow
variables(velocities), we reduce the size of the
optimization problem considerably. The remaining
optimization problem is then of dimension of the
control variables(the suction/injection velocities
on the boundary). The price that is paid for
this dimensional reduction is that the objective
function then becomes an implicit function of
the control variables through solution of the
state equations, and one needs special techniques
to find its derivatives(known as sensitivity analysis).
As a result, the nonlinearity of the objective
function increases. Furthermore, the requirement
of having to solve the Navier-Stokes equations
(which we refer to as the analysis problem) at
each iteration is quite onerous. In this study,
we develop method to overcome these difficulties.

2. Selected previous work

After Prandtl reported in 1904 that the drag
on a cylinder could be efficiently reduced by
sucking stagnated fluid away from the boundary”,
considerable research has been conducted and
is still continuing on developing devices for affecting
suction and injection, as well as methods for
controlling these devices. We will not discuss the
design of these devices here, but will give an
overview of methods for their control.

These control methods are mainly divided into
two types, passive control and active control.
Passive control includes methods that modify
a flow without power input. Examples of passive
control include permanent features of the
geometry such as riblets”®, as well as the use

of a compliant wall that deforms in response to
the flow”. On the other hand. active control
techniques include methods that manipulate
an external boundary layer flow using some
external power source, with the goal of achieving
transition delay, separation postponement, re-
circulation elimination, or drag reduction. Examples
include the suction and/or injection of fluid
through orifices on a flow boundary, or micro-
electromechanical devices that deploy in response
to particular flow conditions." Our primary
concern here is with active control methods, as
they are generally regarded as being the most
effective. Therefore, we will review several selected
active control technigues. We further subdivide
these active control techniques into sensor-based
and model-based methods, depending on whether
or not they are driven by a mathematical model
of the flow field.

2.1 Sensor-based scheme

Sensor-based methods use various measured
flow quantities to determine values of suction/
injection. As such, they must rely on physical
intuition or asymptotic solutions to suggest levels
of appropriate boundary control.

2.1.1 Direct cancellation scheme

The basic idea of a direct cancellation scheme
is to cancel the fluid moving toward the wall
(sweep) with injection, and fluid moving away
from a wall(ejection) using suction. The intention
is to use sensors to determine fluid velocities
a distance away from the wall, and generate
suction/injection based on the sensed velocities.
Choi et al. investigated the possibility of this
scheme using a fully-developed channel flow,'”
Because of the difficulties in constructing and
deploying such sensors, the study was conducted
numerically; that is, the Navier-Stokes equations
were solved to produce a numerical velocity

0]
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field, which was then used to drive the suction/
injection process according to the criteria mentioned
above. Skin-friction was used to characterize
the drag, and was measured in terms of the
change in the mean pressure gradient necessary
to drive the flow with a fixed mass flow rate.
When a “sensor’ detected sweep or ejection at
a distance yq from the wall, an opposing velocity
of the same magnitude was imposed on the wall
in an effort to cancel it, i.e. when a sensor
detected sweep. an equal amount of opposing
velocity(injection) was added and when ejection
was detected, the same amount of opposing
velocity(suction) was applied. Figure 1 shows
the basic idea of this scheme.

Several computations were performed for
different ya to examine the effect of the sensor
location. The best location yielded about 30%
drag reduction. Direct cancellation schemes have
two primary difficulties: (1) they rely on velocity
sensors within in the flowfield, which are difficult
to deploy, and (2) they cannot guarantee an
optimum control.

I sensors at yq

1 wall

<o

Figure 1 Cancellation scheme

2.1.2 Indirect cancellation scheme

In response to the impracticality of velocity-
based sensing methods, other techniques have
been developed that sense indirect quantities
at the wall, such as wall pressure, streamwise
wall-velocity gradient, and higher-order terms in
Taylor series expansions of the normal velocity
component near the wall. Choi et al. also ex-
amined these schemes. The difficulty here is
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finding good correlations between sensed wall
quantities and sweep and ejection. In fact, these
schemes yielded only about 6% reduction of
drag, which is comparable to drag reduction
by such passive control methods as riblets. Other
types of sensors have been also been investigated:
hot films by Alfredsson et a. floating element
sensor by Haritonidis et a.'? piezo-electric
foils by Nitsche et al.,'”
wave sensor by Varadan et a1 The difficulty

and surface acoustic

with all these methods is in making a global de-
cision on drag reduction given only local information.

2.2 Model-based methods

Certainly any of the sensor-based methods
described above can be converted into a model-
based method as follows: replace the measurement
of flow parameters by numerical solution of
the governing fluid equations. Thus, the flowfield
and derived gquantities are available, and this
can be used to drive the rules for specifying
boundary controls. However, the power of model-
based methods is that they can be used to find
the optimum control set, and we will focus on
such a use below.

2.2.1 Mathematical analysis

At this point, we have sufficient experimental
evidence for the viability of drag reduction via
suction/injection. Furthermore, there are calls
in the literature for developing truly optimal
methods for controlling flows.'® What would
be nice is to have some mathematical results
concerning existence and regularity of solutions,
with which we can proceed with confidence to
develop numerical methods for determining these
optimal solutions. Indeed, such results have
recently been established by Gunzburger et
al.."”'™ They have, for the stationary problem.
shown the existence of optimal controls and
states, derived first-order necessary conditions



that must be satisfied by a continuous optimum,
and given error estimates for finite element
approximations of the optimal control and states.

2.2.2 First-order optimal control

It has recently been recognized that sensor-
based methods “fail to provide us with a
rigorous theory to determine the most efficient
feedback control law for a given flow control
problem”.'? Therefore, in the past several years.
researchers have begun to formulate and solve
the control problem as an optimization problem.
First results towards this end have been obtained
by Bewley ef al..'¥ The approach taken here is
to compute the gradient of the objective(e.g.
drag on a body). The gradient of the objective
function at any point is a vector in the direction
of the greatest local increase in objective function.

Therefore they move in a direction opposite to
the gradient. This is known in the optimization

19
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literature as the steepest descent method,
is actually the poorest choice for an optimization
technique. In practice steepest descent techniques
converge too slowly to be effective and, on poorly-
conditioned problems(i.e. when the ratio of the
maximum to minimum eigenvalue of the Hessian
matrix at any point is large), may fail to converge
at all, a situation encountered by the authors.

On the other hand, SQP methods are generally
regarded as being the most efficient optimization
techniques, since they make use of higher order
information in addition to avoiding satisfaction
of the constraints at each iteration.?” As dis-
cussed in the introduction, it is not straightfor-
ward to apply SQP methods to flow optimization
problems, since the constraint sets produced
are very large and nonlinear a fact that motivates
the present work.

3. Problem definition

We consider flow around a bluff body immersed
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in a stream of fluid. At low Reynolds number,
the flow divides and reunites smoothly but with
increasing Reynolds number the flow separates
and recirculates on the downstream side, and
the wake behind the body becomes unstable.
Our aim in this study is to inhibit this boundary
layer separation and flow recirculation numerically
by controlling the velocities on the surface of
the body, using optimization method.

We restrict ourselves to the case of the time-
independent flows. An outline of the our approach
to flow control is as follows:

1) Initially, the velocities on the surface of the
bluff body are assumed to be zero, i.e. there
is a no-slip boundary condition on the surface.

2) Define n disjoint holes on the surface of the
body. Since flow separation and recirculation
occur on the back side of the body, we confine
the holes that region. Suction or injection
can be applied at each hole by controlling
the two velocity components (u, v) in two
dimensions, or the three velocity components
{(u, v, w) in three dimensions.

3

~

Find the optimal velocity vector at each
hole, representing the optimal injection or
suction, that minimizes the objective function,
subject to the flow equations.

As an objective function, we will use the rate
of dissipation of energy due to viscosity, which
is equivalent to the drag force on the body, in
the case of an external incompressible flow.
The flow is modeled by the incompressible
steady-state Navier-Stokes equations.

Therefore the optimization problem can be
expressed as :

minimize 2¢ [ [ D : D] 4@ (m
subject to : —uA u+p( u-v) utvprp=20 (2)
v-ou=40 (3)
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where D=D(u)=(Vu+vu")/2, # is the dynamic
viscosity, e is the density, u is the flow velocity
vector, p is the pressure. Here, the symbolic “ : ~
represents the scalar product of two tensors,
so that

. _ (9ul- 3211-
Vu - vv_xzj c?x]- 0x,-

We reduce the size of the problem by employing
a penalty method : let us relax equation (3) by
replacing it with

V- u=—c¢p (4)

Cleary as ¢—0, we recover the original equation:
in fact, the error in the derivative of u is of
order ¢."” By introducing the pressure in the
mass equation, we can eliminate it from the
problem by solving for p in equation (4) and
substitution expression into equation (2).

In general, it is not possible to solve infinite
dimensional optimization problems such as equa-
tions (1)~(3) in closed form. Thus, we seek
numerical approximations. Here, we use a Galerkin
finite element method.

4. Formulation of the optimization problem

The continuous optimization problem has been
defined in equations (1)~(2), that is: given a
set of disjoint holes, find values of velocities at
each of those holes that minimize the dissipation
function, i.e. the rate at which heat energy is
conducted into the fluid due to viscosity, subject
to incompressible Navier-Stokes equations. Using
the finite element approximation, we arrive at
a discretized form of the optimal control problem,
which in symbolic form is:

minimize  @{(u, b)
subject to h(u, b)=0 (5)
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Here, the constraints h=0 are the discrete form
of the Navier-Stokes equations. We have partitioned
the velocities u into the state variables u(i.e. the
velocities at all nodes other than those that
lie on suction/injection holes), and the control
variables b(i.e. the velocities of nodes where
suction/injection is applied). The objective function
O is related to velocities by

Q= —%uTJu (6)

and again depends on both state velocities u
and control velocities b. Here J is the portion of
the Jacobian matrix that depends on viscosity.

We may also choose to augment the constraints
by bounds on the control variables.

The problem is then one in nonlinearly cons-
trained smooth optimization.

In general it is not straightforward to apply
SQP methods to flow optimization problems of the
equation (5), since the constraint sets produced
are very large and nonlinear. Therefore in this
chapter we pursue a decomposition of the problem
into the state space and the control space, as
follows: solve at each iteration the discrete
Navier-Stokes equations (h(u, b)=0) for the
state variables (u) given values of the control
variables (b). Thus. we have eliminated the state
equations from the constraint set, and we have
eliminated the state variables from the set of
optimization variables. As a result of this de-
composition, the state variables become an
implicit function of the control variables, the
implicit function being the flow solution itself.

Thus, we can write the optimization problem
as the unconstrained optimization problem:

minimize @ (u(b), b) (N

The dimension of the optimization problem
is now greatly reduced.



5. Solution method for discrete Navier-Stokes
equations

The discrete form of the Navier-Stokes equations
are a system of nonlinear algebraic equation,
i.e. h(u)=0, where h represents the residuals
and u represents the vector of unknown velocities.
A very effective method for solving these equations
is Newton's method. It is well-known that this
method is locally quadratically convergent, that
is that close to the solution, the error is squared
between subsequent iterations, i.e.the number
of correct digits is doubled.

Following is a summary of the steps of Newton's
method:

1) update hy and Ji

2) check convergence criterion : if Ilhxll <7y,
then terminate; otherwise go to Step 3

3) solve Je p = -hx

4) wer = wetp

5) go to Step 1

where he and J« indicate evaluation of h and
J at w.. We use y =107,

Because of the large dimensions involved, we
must use an efficient method to solve this system
of equations. Later, sensitivity analysis also
requires the repeated solution of linear systems
having the same coefficient matrix, but different
right-hand sides, each corresponding to a different
control variable. This, as well as the fact that
J is unsymmetric, favors sparse direct methods
for solution. Perhaps the most efficient code
for factorization of sparse unsymmetric matrices
is the unsymmetric-pattern multifrontal sparse
LU factorization code UMFPACK.?" and we
use this code for solution of the linear system
arising at each step of Newton’s method.

Despite its excellent convergence rate, Newton's
method is only locally convergent. In particular
for Navier-Stokes equations, an upper bound

on the diameter of the convergence ‘ball” for
Newton's method varies as 1/Reynolds number.'®’
The consequence is that as the Reynolds number
increases, one needs better and better initial
guesses to guarantee convergence to a solution:
otherwise, divergence may occur. Thus, we use
a continuation strategy to solve a sequence of
problems leading to the Reynolds number of
interest, as follows:

—
~—

solve the problem with low Reynolds number.

2) increment Reynolds number.

3) solve the problem using the results of
previous step as initial guesses.

4) repeat above steps until final Reynolds

number is reached.

Density p is used as a parameter to increase
Reynolds number. Within each step, we iterate
until convergence is achieved, then the converged
solution is used as the initial guess for the next
step.

6. SQP method for solving the optimization
problem

The basic SQP iteration can be viewed as:

) do analysis(obtain ux knowing bx)

) do sensitivity analysis

3) construct approximate Hessian matrix B
) check convergence criterion: if OK, then

terminate: otherwise go to Step 5

5) find px using QP

6) bin=br + ape 2 €(0.1]

7) go to Step 1

As mentioned before, the continuation technique
is used on the analysis problem.

The straightforward way to integrate this
continuation technique into an optimization
method is as follows(see Figure 2):

HEMARRRSE =28 X115 H45(2002.12) 667
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Optimization
Re (increase Reynolds number)
iteration Analysis
step
by

iteration

step

Figure 2 Proposed optimization algorithm

1) use continuation to solve the analysis
problem for the given Reynolds number.

2) update the control variables by doing one
optimization iteration.

3) repeat the above for each optimization
iteration until the optimum is reached.

This method is superior to the steepest descent
method that we reviewed in chapter 2, because
it uses(approximate) curvature information in
solving the optimization problem.

7. Numerical Example

The method and technique developed here are
tested on a problem of flow around an infinite
cylinder in two dimensions. However, our metho-
dology and code can be applied to problems of
arbitrary geometry, provided that an appropriate
mesh is supplied.

Without boundary control, separation for a
cylinder is evident already for small Reynolds
numbers(Re ¢ 10): the flow field exhibits two
symmetric standing eddies up to around Re=>50:
and beyond this range, the flow becomes in-
creasingly unstable and vortices begin to be
spun off asymmetrically. However, based on the
experimental results of Prandtl, we expect that
application of suction/injection would be capable
of keeping the flow more-or-less attached for
Reynolds number as high as at least 400. Thus,

668 st=EATRDEE =28 H15H K45(2002.12)
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the steady Navier-Stokes equations are used
to model the flow, with the knowledge that they
may not be consistent with suboptimal solutions
at this value of Re, but at the optimum we
expect steady flow. In addition, we make use
of symmetry about the midplane of the cylinder
to reduce problem size; again, without boundary
controls this assumption is not valid, but with
boundary controls we expect that it should be.

These assumptions will be validated at the
end of this section by showing that the flow
field computed using a time-dependent simulation
at Re=400 is both symmetric and steady when
the optimal controls are applied.

Of course, when they are not applied, the
flow field is unsymmetric and unsteady.

A problem description is shown in Figure 3.

Using symmetry about the midplane, we obtain
the computational domain and boundary conditions
shown in Figure 4.

The Reynolds number is determined by

oUd
Re= ——"—
o
Tx=0,V=0
T
a—
——d

v Tx=0
-0 FH—* L
v=0 @ Ty=0
——

Tx=0,V=0

+
X

Where U,V o Velocities
Tx, Ty . Tractions
r=1/20

Figure 3 Flow around cylinder
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where d is the diameter of a cylinder. Our target
Reynolds number is 400.

Using symmetry and solving the steady Navier-
Stokes equations, the flow field shown in Figures
5~7 is obtained.

Tx=0,V=0
—ed
e
o
=1 —vf
Tx=0
=0 [ ] Lz
S Ty=0
—
f—ot
U=V=0
Tx=0,V=0 Tx=0V=0
— L —of
Where U, V. Velocities

Tx, Ty : Tractions
r=/20

Figure 4 Flow domain
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Figure 7 Velocity vectors of back side of the cylinder,
without control

Figure 5 shows the streamlines around the
cylinder without any control, i.e. with the no-slip
condition enforced on the surface of the cylinder.

Figure 6 depicts the velocity vector field again
without control. The flow separation and recircu-
lation behind the cylinder are evident from the
figures. A detail of the flow field behind the
cylinder is shown in Figure 7.

To demonstrate optimal control, we choose
five points on the back side of the cylinder.

Fluid is injected into the flow or sucked away
from it at these chosen five points with the
objective of minimizing the rate of viscous energy
dissipation. These points are chosen equally spaced.
Each point has two control variables which are
the independent components of velocity.

Thus this example has a total ten optimization
variables.

Figures 8~9 show the flow that results from
optimal suction/injection. The streamlines corre-
sponding to the optimal solution are shown in
Figure 8.

The flow pattern appears to be very similar
to that of a potential flow. The velocity field
corresponding to the optimum is depicted in
Figure 9. The direction and magnitude of suction/
injection is apparent from the figure.

Suction works to keep the streamlines from
separating on the back side of the cylinder, while
injection at the base keeps the flow from stagnating
and recirculating.

SFRMAITARDSE =2% X158 H45(2002.12) 669
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Figure 9 Optimal velocity vectors

Table 1 optimal control velocities and objective

functions

Re 100 200 300 400
objective no control| 6.53 | 8.13 | 742 | 11.83
optimal | 3.70 | 3.45 | 3.56 | 4.26

b 1.59 1.43 1.20 1.06

bz 45 .48 .39 .32

b3 1.48 .90 .33 -.03

by 41 .21 .00 -.14

control bs .92 -.24 -.55 -.66
variables bs .91 -.37 -.81 -.98
by -.75 -.55 -.35 -.21

bg -1.05 | -.93 -.64 -.41

by -.22 -.18 -.16 -.15

bio -1.63 | -1.24 | -.92 -.70

Table 1 shows the dependence of the optimal
solution on different values of Reynolds number.
The table includes both initial and final objective
function values as well as the optimal values of
controls. Note the smooth variation in values
of the optimal controls with Reynolds number,
suggesting that continuation may be useful.

We have assumed the optimal flow field to
be both steady-state and symmetric for Reynolds
number as high as 400. Thus, the steady Navier-
Stokes equations were used to model the flow.
To check the validity of this assumption, we
solved our problem with time dependent analysis
code over the whole domain.

Figures 10~11 are a snapshot of the flow
field at 1 second, showing respectively the velocity
vectors and streamlines without any suction or

670 stEMAMTERsts =2F A15H N4E(2002.12}

Figure 10 Time dependent velocity vectors, without
control, t=1sec

0.501
0 th@f‘— —
— — ]
-0.50 = —
5% 501 0 0.501

Figure 11 Time dependent streamlines, without
control, t=1sec

injection for a flow of Re=400.

Figures 12~13 show velocity vectors and
streamlines at 3.5 second.

A Karman vortex street is evident from the
figures. Clearly the flow is time dependent and
unsymmetric,

Now when the optimal controls are applied
at five points on the backside of the cylinder,
the flow field in Figures 14~17. Figures 14~15
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show velocity vectors and streamlines at lsec.
At 3.5sec, Figures 16~17 show that the flow
field is unchanged.

Furthermore, it is symmetric. Thus, our
assumptions of steadiness and symmetry at
the optimal solution are valid, and allow us to
simplify the formulation of the optimization
problem.

s

:
e
WRE—

Figure 12 Time dependent velocity vectors, without
control, t=3.5sec

0.501

———————

050 = ===
0-5% so1 0 030

Figure 13 Time dependent streamlines, without control,
t=3.bsec

8. Conclusions

In this study, we have addressed the problem
of the optimal control of a viscous, incompressible
fluid. The objective function considered is the
drag on a solid body immersed within the flow
field, which is equivalent to the rate of dis-
sipation of energy due to the viscosity of the fluid.

Figure 14 Time dependent velocity vectors, with
control, t=1sec

0.501 p= —r

: ( ———
“05% 561 0 0.50
Figure 15 Time dependent streamlines, with control

t=1sec
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Figure 16 Time dependent velocity vectors, with

0.501

'0,5(_)&

control, t=3.Bsec

%

501 4] 0.50

Figure 17 Time dependent streamlines, with control,

t=3.bsec

The control mechanism is the rate of application

of suction/injection at boundary holes.

The main contributions of this research are:

1) The development of a methodology for solving

672

optimal flow control problems. The metho-
dology has proven to be robust and efficient
on the problems that were solved, never
failing to converge to at least a locally-

SRR RS =2 M156W HM45(2002.12)

optimal solution. We feel that if optimal
flow control is to prove useful industrially,
the considerations of robustness and ef-
ficiency must be addressed.

2) The use of the optimal control methodology
to assess the effectiveness of a current
heuristic method, for the model problem of
flow around an infinite cylinder. Because
the study of these issues requires large
amounts of computational resources, they
could not have been performed without
the development of methods as efficient
as the ones presented here.

However, in order for the methodology presented
in this study to become useful for industrial
flows, several enhancements should be made
to the flow model and solution methodology:

1) The incorporation of an efficient iterative
solver for the linear systems that arise
at each step of the Newton solver and for
each right-hand side of the sensitivity
equations. This would reduce storage and
operation counts considerably. especially
in three dimensions. This would most likely
require moving to a mixed approximation
of the Navier-Stokes equations: our ex-
periments indicated that ill-conditioning
created by the penalty method rendered
a Krylov iterative method(the quasi-minimum
residual method) all but hopeless. The
choice of the iterative method/preconditioner
pair should take into account the need in
sensitivity-based optimization for solving
multiple right-hand side linear systems,
one corresponding to each control variable
(unless an adjoint formulation is used).
Thus one can invest in a good preconditioner,
amortizing its cost over the multiple right-
hand sides.

2) A turbulence model must be incorporated.



4)

Most industrial flows are not laminar. While
this is a fairly straightforward thing to
do generally, it does bring up a difficulty
in the context of optimal flow control: for
proper first and second derivatives with
respect to control variables, we require exact
Jacobians matrices of the state equations
with respect to fluid velocities. The addition
of a turbulence model makes the viscosity
depend on the velocity gradient, complicating
the computation of the Jacobian. It would
be interesting to see if the standard Navier-
Stokes Jacobian(without a turbulence model)
is a sufficiently good approximation of the
true Jacobian. If true, it would substan-
tially simplify the addition of a turbulence
model.

It would be desirable to extend the model
to a compressible fluid, because of the
interest in aerodynamic flow control. Again
this is ordinarily a straightforward(albeit
time-consuming) task, but the need in
sensitivity analysis for exact Jacobians makes
things more complicated in compressible
flows, one rarely couples all equations together
and computes their Jacobian matrix.

It would also prove useful to extend the
methodology to time-dependent problems,
since this usually characterizes industrial
flows. Here one would have to define an
appropriate horizon of time, over which the
objective function would be integrated,
given an approximate solution of the time-
dependent Navier-Stokes equations over
this horizon. The major challenge would be
overcoming the enormous computational
complexity associated with having to do
time-dependent. simulation at each optimi-
zation iteration. In the near future this
appears to be an intractable problem on
anything but the most powerful parallel
supercomputers.
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Ultimately, we feel that the main contribution
of this study is the demonstration that, through
the use of sophisticated method, one can solve
model optimal control problems governed by
Navier-Stokes flows. Thus. we can contemplate
the solution of such problems for more complex
industrial flows in the not-too-distant future.
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