References
- R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- J. D. Avrin, Large-eigenvalue global existence and regularity results for the Navier- Stokes equations, J. Differential Equations 127 (1996), no.2, 365-390. https://doi.org/10.1006/jdeq.1996.0074
- R. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J. 44 (1995), no. 4, 1183-1206.
- H. J. Choe and K. Hideo, The Stokes problem for Lipschitz domains, Indiana Univ. Math. J. 51 (2002), no. 5, 1235-1259. https://doi.org/10.1512/iumj.2002.51.2257
- J. Y. Chemin, I. Gallagher, and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. of Math. (2) 173 (2011), no. 2, 983-1012. https://doi.org/10.4007/annals.2011.173.2.9
- I. Chueshov, G. Raugel, and A. M. Rekalo, Interface boundary value problem for the Navier-Stokes equations in thin two-layer domains, J. Differential Equations 208 (2005), no. 2, 449-493. https://doi.org/10.1016/j.jde.2004.03.023
- P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
- P. Deuring and W. von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains, Math. Nachr. 171 (1995), 111-148. https://doi.org/10.1002/mana.19951710108
- H. Fujita and T. Kato, On the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 16 (1964), 269-315. https://doi.org/10.1007/BF00276188
- L. T. Hoang, Incompressible fluids in thin domains with Navier friction boundary conditions (I), J. Math. Fluid Mech. 12 (2010), no. 3, 435-472. https://doi.org/10.1007/s00021-009-0297-2
- L. T. Hoang and G. R. Sell, Navier-Stokes equations with Navier boundary conditions for an oceanic model, J. Dynam. Differential Equations 22 (2010), no. 3, 563-616. https://doi.org/10.1007/s10884-010-9189-7
- E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grudgleichungen, Math. Nachr. 4 (1951), 213-231.
- D. Iftimie, The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier- Stokes equations, Bull. Soc. Math. France 127 (1999), no. 4, 473-517. https://doi.org/10.24033/bsmf.2358
- D. Iftimie and G. Raugel, Some results on the Navier-Stokes equations in thin 3D domains, J. Differential Equations 169 (2001), no. 2, 281-331. https://doi.org/10.1006/jdeq.2000.3900
- D. Iftimie, G. Raugel, and G. R. Sell, Navier-Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J. 56 (2007), no. 3, 1083-1156. https://doi.org/10.1512/iumj.2007.56.2834
- M. Kwak and N. Kim, Global existence for 3D Navier-Stokes equations in a thin periodic domain, J. Korean Soc. Ind. Appl. Math. 15 (2011), no. 2, 143-150.
- I. Kukavica and M. Ziane, Regularity of the Navier-Stokes equation in a thin periodic domain with large data, Discrete Contin. Dyn. Syst. 16 (2006), no. 1, 67-86. https://doi.org/10.3934/dcds.2006.16.67
- J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193-248. https://doi.org/10.1007/BF02547354
- M. Mitrea and S. Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains, Differential Integral Equations 22 (2009), no. 3-4, 339-356.
- S. Monniaux, On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains, J. Funct. Anal. 195 (2002), no. 1, 1-11. https://doi.org/10.1006/jfan.2002.3902
- S. Montgomery-Smith, Global regularity of the Navier-Stokes equations on thin three dimensional domains with periodic boundary conditions, Electron. J. Differential Equations 1999 (1999), no. 19, 1-19.
- M. Paicu and Z. Zhang, Global regularity for the Navier-Stokes equations with some classes of large initial data, Anal. PDE 4 (2011), no. 1, 95-113. https://doi.org/10.2140/apde.2011.4.95
- G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), no. 3, 503-568.
- G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Math. Sciences 143, Springer, Berlin, 2002.
- R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No. 66, SIAM, Philadelphia, 1995.
- R. Temam and M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1 (1996), no. 4, 499-546.
-
K. Wang, On global regularity of incompressible Navier-Stokes equations in
${\mathbb{R}}^3$ , Commun. Pure Appl. Anal. 8 (2009), no. 3, 1067-1072. https://doi.org/10.3934/cpaa.2009.8.1067