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GLOBAL EXISTENCE FOR 3D NAVIER-STOKES
EQUATIONS IN A LONG PERIODIC DOMAIN

NAMKWON KIM AND MINKYU KWAK

ABSTRACT. We consider the global existence of strong solutions of the 3D
incompressible Navier-Stokes equations in a long periodic domain. We
show by a simple argument that a strong solution exists globally in time
when the initial velocity in H! and the forcing function in LP([0,T); L?),
T > 0,2 < p < 400 satisfy a certain condition. This condition commonly
appears for the global existence in thin non-periodic domains. Larger
and larger initial data and forcing functions satisfy this condition as the
thickness of the domain e tends to zero.

1. Introduction

We consider the incompressible Navier-Stokes equations,

(1) up —vAu+ (u-V)u+Vp=f,
(2) V-u=0,
in a periodic domain Q = T3 = [0,11] x [0,12] x [0,l3]. Here u denotes the

velocity of a homogeneous, viscous incompressible fluid, f is the density of
force per unit volume, p denotes the pressure, and v is the kinematic viscosity.
We require that the forcing function f and the initial data ug satisfy

VfZVUQ:O

We assume in addition that
(3) fdr = / udr = 0,
Q Q

which could be achieved by the Galilean transformation with suitable vectors
c(t) and e,
de

u(z,t) = u(x + c(t) + et, t) — 5 e
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Indeed, we can take

o(t) = /0 t /0 ' / (o, s)dadsdr, ¢ = / woda.

By the classical results of Leray and Hopf ([11], [4]), there exists a global weak
solution of the Navier-Stokes equations in a three dimensional torus. It is also
known that the solution becomes necessarily strong (regular) for all regular data
in a two dimensional domain. But in a three dimensional domain, global strong
solutions have only been guaranteed for small initial data (See, for example,
[2], [3], [14], [15] and the references therein).

In [13], Raugel and Sell treated the problem on thin periodic domain, 2 =
(0,11] x (0,12] x (0, €] and they obtained a significant existence result on global
regular solutions. The main idea is that if the thickness of the domain is small
enough, the solution of the Navier-Stokes equations is close to the 2D Navier-
Stokes equations. They proved that there are large sets R(¢) C H'(Q) and
S(e) € L*((0,00), L3(£2)) such that if u(0) = ug € R(e) and f € S(e), then
there exists a strong solution u(t) that remains in H'(2) for all ¢ > 0. The
sets R(e) and S(e) get larger and larger as e — 0.

Since then, there have been many improvements on the estimates of the size
of these sets R(e) and S(e) under various boundary conditions (See [1], [5],
[12], [6], [7], [8], [9], [16] and the references therein). Roughly, under various
boundary conditions except the periodic boundary condition, it has been shown
that if

(4) Juoll < Ce™2 and || £l Lo ((0,00),02) < Ce /2

for some constant C' = C(v), then the corresponding global strong solution
exists (See [1], [16]). We note that the above condition can cover very large
initial data and forcing functions if € > 0 is small enough.

However, under the periodic boundary condition, it is not known whether
(4) implies the existence of global strong solutions. Until now, it is known that,
when f = 0, the existence of the global strong solution is guaranteed under the
condition ([10])

luollm < 0671/2|loge|1/2,
or under the following condition ([6])
[(Nug)s| < Cve'?, N[l (0,00:L2) < Cr7e"/?,
||VUOH < Cl/e_l/z, Hf||L°°(0,oo;L2) < CV26_1/2.

Here, N is the average operator with respect to the thin direction. We note
that the first two conditions in the above are not so restrictive since Nug and
N f are independent of the third variable and so they are in fact € independent
conditions.

In this paper, we consider the global existence of strong solutions in a long
periodic domain, Q = (0, €] x (0, €] x (0,1]. We first prove in a simple way that
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a global strong solution exists whenever the initial and the forcing functions
satisfy for any 2 < p < oo and L > 0,

Cv
L
together with a mild condition,

(2p*1)/p/\(13p—4)/4p

5)  [[Vuolz: < and || f]|Lr((0,00),2) < C¥

1
(6) ZHUOHL2 <1

for some universal constant C. Here, \; = 472/l is the first eigenvalue of the
Stokes operator. This result is obtained simply by considering a differential
inequality for a product of norms, which is comparable to H'/? norm. The most
natural choice of L in the condition (6) is L = m , which is not practically
restrictive since it just means that the spatial average of the square of the
velocity is bounded by a suitable constant. Then, when the domain is long rod
type Q = (0,¢€] x (0, €] x (0,1], the choice L = 1/|Q2] becomes of order € and the
bound on H' norm of the velocity in (5) is improved greatly compared to the
case of thin domain. We also give a condition independent of the L? norm of
the velocity. Concretely, we show that the global regularity is guaranteed if

[Vuo|| < Cve 2, || f]lpe < CrP=D/pe1/2

for any 2 < p < oo. The above condition exactly recovers (4) even for more
general p and supports that the condition (4) might be enough for the global
existence in a thin periodic domain under the periodic boundary condition.

This work has been partially done while the first author is visiting the Uni-
versity of Minnesota for a sabbatical year and he is grateful to the School of
Mathematics for their warm hospitalities and specially to Prof. G. R. Sell,
Vladimir Sverak and Luan Hoang.

2. Preliminary estimates

Throughout the paper, = (0, €] x (0,¢€] x (0,]. Here, { is a fixed constant
and € > 0 is a small parameter. For convenience’s sake, we denote the two
dimensional torus D = D, = (0,¢] x (0,€¢]. The function spaces we work with
are

H={uecL*Q)|V -u=0, /u:O}
Q
and V = HNWY2(Q). Tt is well known that ||Vu| 2 is an equivalent norm for
V due to the Poincaré inequality. For convenience’s sake, we also denote
I llze =1 Moy -2 =10 - iz o,00szac@)) = - g

the Leray projection on L?(Q2) into H by P, and the Stokes operator by A =
P(—A). We define the bilinear form B(u,v) = P(u - V)v and the trilinear form
b(u,v,w) by

b(u,v,w) = (B(u,v),w) = /QB(u, v) - wdz.
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We now define an orthogonal projection M on L?(Q.) by

(7) = 62/ / u(xy, xo, x3)dr1das

and denote v = Mu and w = (I — M)u for simplicity. Note that the above
projection is different from the one in [6]. Here, v = v(z3) and V- v = 0. So,
vz must be a constant in space. Since we assume (3) from the first, we then
get

(®) 5 = [ua=o
V3 = — V3 = —— ug = u.
€2 €

It is clear that the following Poincaré inequality holds for w € H*! since Mw =
0:

9) lwl* < Ce*|[Vw|[.

Further, w satisfies the following inequalities, which are basically Gargliardo-
Nirenberg inequalities.

Lemma 2.1. Given u € VN D(A), let v=Mu and w = (I — M)u. We have

(10) Vloe < Z w0l A0) 7,

a1
(11) IVwlly < C(IVaw|[|w]| + [[w]®)/24 ] Aw]| 5", 1 <q¢<3.
Here, all C'’s are independent of e.

Proof. Since w(-,x3) is average zero on D for any x3 € (0,1], w satisfies the
following two dimensional Gargliardo-Nirenberg inequality.

IVl ) < CIV?wlltzin, w20,

Here, C'is independent from e. In fact, the above inequality is scaling invariant.
Integrating with respect to x3, we have

! l 21
) [an [ vapr<e [ ([ 9202) 7 sl e
0 D 0 D x3

While,

[wl]|72(p (b) < + [[w]Z2(py(a)

b
| e dulwlfa ya2)
a

b
< / / Ostwl[wlde + ]2 (a)
a D

< IVswllllw]l + [wlZz ) (@)-

Integrating the above with respect to a over (0,1], we have

1
sup w72y < [ Vswllflw] + 7 el
3



GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATION 319

Plugging the above into (12) and using the Holder inequality, we have
/QIVWIq < OVl T ([ Vawllwl + w*)'/2.
Since ||V2w| < C||Aw||, we have the desired inequality (11). Similarly,

b
((93’01')2(()) = 2/ d:pgﬁgvi&;vi + ((93’0)2(0,).
There exists a such that ds3v;(a) = 0 since J3v; is average zero. Thus we have
C
(V00(6) < C [ daa] 72| Ve] < V]| 4v].

Taking supremum with respect to b and adding them up for ¢ = 1,2, we have
the desired result (10). O

We now present the following estimates concerning the trilinear form b. We
use the above lemma with ¢ = 3 to get the estimates.

Lemma 2.2. Let v and w be as before, we have

(13) [b(w, w, Aw)| < Cllwl||"?||Vw|[/2[| Aw|]?,

(14) [b(v, w, Aw)], [b(w,v, Aw)|, [b(w,w, Av)]
< OVl 2 Av || w2 ]| Aw] P2,

Here, all C'’s are independent from e.

Proof. First, by integration by parts,
b(w, w, Aw) = — /(w Vw - Aw = /(ij Vw-Vw+w-V(Vw)V,w

= /(ij -Vw -V, w.
Thus, using (11) with ¢ = 3, (9), and the smallness of e,
|b(w, w, Aw)| < C|[Vwl|f3 < Ol Aw|*([|Vaw||'/?|w]|'/ + uw])
< C|| Aw| ||Vl w2,

By similar argument,

b(v, w, Aw) = /(Vjv -Vw - Vjw.
Then, since v depends only on x3,

1

[b(v, w, Aw)| < / da:3|V11|/ |Vw|?
0 D

< OVl o IVwl® < CIVull V2] Av] 2| V|| Aw]
< O Voll/2 | Avl|*/2 [lw]| /2] Aw] P2,
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Here, we used in the last line the interpolation inequality

(15) VAP == [ 7ar <7147
Similarly,

|b(w, v, Aw)| < /Ol dzs|Vol[|w| r2(p)l|Aw| 2(p)

< OVl o lwllAw]] < V|2 Avl2 ]| Aw]*2,
[b(w, w, Av)| = ‘/ Vw-Vw -Vjv+w-VVw- Vv

< C[[Vo)| 2| Av||"2 |lw]| 2| Awl|*/2. O

3. Regularity

In this section, we give our main result. We first reformulate (1)-(2) in the
standard nonlinear evolutionary equation on the Hilbert space V,

(16) up + vAu + B(u,u) = Pf.

We shall consider solutions of (16) with the initial data ug and f = f(¢) in the
class

(17) up €V, f(t) € L*([0,00), H), p > 2.

We first present the following theorem, which is simple and shows the under-

lying idea of our result.

Theorem 3.1. Given any p > 2, the Navier-Stokes evolutionary equation (16)
has a solution

u € C°([0,00), H) N L>((0,00), V)

2

c?

Here, A1 is the first eigenvalue of the Stokes operator, C' is an absolute constant
independent of €. Moreover, in this case

if
2p—2

(18) luolll[Vuol| +2v~ ">

_3p—4 9
2
AT e <

2p—2

(19) IVul®(t) < [Vuol® +4v= 77 A 7 [If152
for allt > 0.

Proof. By taking the scalar product of (16) with u and using the fact that
/B(u, w)udz = 0,
we find that

d
(20) Sl + 20 Val® < 20| £ ]l
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Since v depends only on z3 and vs = 0, (B(v,v), Av) = 0 and b(v,v,w) =
b(w,v,v) = b(v,w,v) = 0. So,
(B(u,u), Au) = (B(v,w), Aw) + (B(w,v), Aw)
+ (B(w,w), Av) + (B(w,w), Aw)
< C(IVo )72 A0 ]2 |lw]| /2 Aw]|*2 + [fuw]|*2|| V]2 Aw]|?)
< Cllw]| 2|Vl /)| Aulf?

by the orthogonality of v and w. Then, taking the scalar product of (16) with
Au and using the above estimate, we obtain

+ ‘ / B(u,u)Au

(21) < 2| f][[Aull + C(llwl[|Vul) /| Aul/>.
Now, we multiply (20) by ||Vu||? and (21) by ||u||? and adding them to have

d
%HVuHQ + 2v]|Aul]? < 2 ‘/fAu

d
Z (IlP1vull®) + 20/ Vul|* + 20 u]?| Aul?
(22) < 20 flllll(IVull® + lalllAul) + CCOlall IVl [lull ]| Aul.

By the Young inequality and (15), we have
20l (el + llullllAull) < 4111wl ]| Aull

[Vul]*/2
< A= 2 ]| Aue]
A
2 2 4 2
< vlful*[[Au]” + —7Z I FI7 [Vl
v
Denoting G? = ||ul|?||Vu||?, we thus arrive at
d o 2 1/2 2 2 4 2
G NG < [OG =] ull? Aul? + M}/anu G.
If G(t) < % for all ¢ > 0,
d 2
—G+vMG < 2.
dt +V 1 —_ U)\}/QHJC”

Therefore, by the Gronwall inequality,
2
1/)\}/ 2

(p—2)/p
2 p—2
< G(0 e 2 —_—
= ( >+V)\1/2||f p,2 (pl/)\1>

t
G 26O + — [ e as
0

2
|p,2

NG s _tpa
sa<0>+2(”p) A g
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for any p > 2. Note that the above estimate holds true even for p = 2 and
oo. Since ((p — 2)/p)(p_2)/p < 1, the typical continuation argument and (18)
justifies the above argument and we indeed have G(t) < Z,—zz for all ¢ > 0.
Furthermore, if G(t) < 5—22, we apply the Holder inequality to (21) to have

d 2 vV 2 _ 2 2
— - <=z )
SITulP + SVl < )]

Again, by the Gronwall inequality,

t
2
Vul?() < [Fuall + [ 271 o0 s,
0
which gives (19) and finishes the proof. O

The condition (18) is in a sense a condition of smallness of the initial data
and external force. However, this condition allows for initial data with large
H' norm provided that the L? norm of the initial data and f are small enough.
In particular, when f = 0, the above theorem tells that there exists a globally
regular solution if |lug|| is small enough compared with v?||Vug||~!. As a
corollary of the above theorem, we have the following.

Corollary 3.2. There exists a globally reqular solution if initial data satisfies
(5) and (6) with L = € when Q = [0,1] x [0,¢€] x [0, €].

Applying the projections M and (I — M) to the equation (16) and using
MB(v,v) = B(v,v) =0 and M B(v,w) = MB(w,v) = 0, we get the equation
for v,

dv
(23) E—l—yAv:Mf—MB(w,w),
and the equation for w,

(24) % +vAw = (I - M)f - B(w,v) — B(v,w) — (I — M)B(w,w).

Theorem 3.3. There exists a globally reqular solution u of (16) in Q if, for
some constant C,

2
Ve

12 €

2p—2

_p=2
(25) IVuol® + 20777 Ay 7 | fl72 <

Proof. We start from (21). By (9), (21) becomes
d
IVl + 20 Aull < 2 £[[|| Aull + C (el Vo |[[|Tul)*/?]| Aul?.
Then,
d 1
IVull* + (v = Ce 2| Vull) | Aull* < ~|If]?

since ||Vu|| > ||Vw||. Now, we apply the Gronwall lemma to the above in-

equality with typical smallness argument. That is, since [|[Vug| < %671/ 2
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from (25), if |Vul|(t) > 55€e /2 for some ¢ > 0, there would be the first time

t = T such that |Vul||(T) = %6’1/2. However, for 0 <t < T,

d 2 v o 1 2
SVl + En vl < ISP

Applying the Gronwall lemma to the above inequality, we would have

1 T
V(7)< [Fuall + 5 [ e /2

(p—2)/p
1 /2(p—2)
< ||Vug|* + > (1/)\11)) Hf||2,2

2p—2

_p—2
< | Vuol® + 20777 Ay 7 1 fl5 2

If (25) holds true, this leads a contraction. Therefore, ||Vul||? < 4152 et for all

t > 0 and we finish the proof. O

Clearly, the condition (25) in particular implies that there exists a globally
regular solution if, for suitable C,

IVugll < Cve72, ||l < CCP=D/re 1/

. 2 .
since \; = 4[% is fixed.
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