GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A LONG PERIODIC DOMAIN

Namkwon Kim and Minkyu Kwak

ABSTRACT. We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a long periodic domain. We show by a simple argument that a strong solution exists globally in time when the initial velocity in H^1 and the forcing function in $L^p([0,T);L^2)$, T>0, $2\leq p\leq +\infty$ satisfy a certain condition. This condition commonly appears for the global existence in thin non-periodic domains. Larger and larger initial data and forcing functions satisfy this condition as the thickness of the domain ϵ tends to zero.

1. Introduction

We consider the incompressible Navier-Stokes equations,

(1)
$$u_t - \nu \triangle u + (u \cdot \nabla)u + \nabla p = f,$$

$$(2) \nabla \cdot u = 0,$$

in a periodic domain $\Omega = T^3 = [0, l_1] \times [0, l_2] \times [0, l_3]$. Here u denotes the velocity of a homogeneous, viscous incompressible fluid, f is the density of force per unit volume, p denotes the pressure, and ν is the kinematic viscosity. We require that the forcing function f and the initial data u_0 satisfy

$$\nabla \cdot f = \nabla \cdot u_0 = 0.$$

We assume in addition that

(3)
$$\int_{\Omega} f dx = \int_{\Omega} u dx = 0,$$

which could be achieved by the Galilean transformation with suitable vectors c(t) and e,

$$u(x,t) \rightarrow u(x+c(t)+et,t) - \frac{dc}{dt} - e.$$

Received November 5, 2010.

 $2010\ Mathematics\ Subject\ Classification.\ 35\text{Q}30,\ 35\text{K}51.$

Key words and phrases. Navier-Stokes equations, global existence, strong solution.

Indeed, we can take

$$c(t) = \int_0^t \int_0^r \int f(x,s) dx ds dr, \quad e = \int u_0 dx.$$

By the classical results of Leray and Hopf ([11], [4]), there exists a global weak solution of the Navier-Stokes equations in a three dimensional torus. It is also known that the solution becomes necessarily strong (regular) for all regular data in a two dimensional domain. But in a three dimensional domain, global strong solutions have only been guaranteed for small initial data (See, for example, [2], [3], [14], [15] and the references therein).

In [13], Raugel and Sell treated the problem on thin periodic domain, $\Omega = (0, l_1] \times (0, l_2] \times (0, \epsilon]$ and they obtained a significant existence result on global regular solutions. The main idea is that if the thickness of the domain is small enough, the solution of the Navier-Stokes equations is close to the 2D Navier-Stokes equations. They proved that there are large sets $R(\epsilon) \subset H^1(\Omega)$ and $S(\epsilon) \subset L^{\infty}((0,\infty), L^2(\Omega))$ such that if $u(0) = u_0 \in R(\epsilon)$ and $f \in S(\epsilon)$, then there exists a strong solution u(t) that remains in $H^1(\Omega)$ for all $t \geq 0$. The sets $R(\epsilon)$ and $S(\epsilon)$ get larger and larger as $\epsilon \to 0$.

Since then, there have been many improvements on the estimates of the size of these sets $R(\epsilon)$ and $S(\epsilon)$ under various boundary conditions (See [1], [5], [12], [6], [7], [8], [9], [16] and the references therein). Roughly, under various boundary conditions except the periodic boundary condition, it has been shown that if

(4)
$$||u_0||_{H^1} \le C\epsilon^{-1/2}$$
 and $||f||_{L^{\infty}((0,\infty),L^2)} \le C\epsilon^{-1/2}$

for some constant $C=C(\nu)$, then the corresponding global strong solution exists (See [1], [16]). We note that the above condition can cover very large initial data and forcing functions if $\epsilon>0$ is small enough.

However, under the periodic boundary condition, it is not known whether (4) implies the existence of global strong solutions. Until now, it is known that, when f = 0, the existence of the global strong solution is guaranteed under the condition ([10])

$$||u_0||_{H^1} \le C\epsilon^{-1/2} |\log \epsilon|^{1/2},$$

or under the following condition ([6])

$$||(Nu_0)_3|| \le C\nu\epsilon^{1/2}, ||Nf||_{L^{\infty}(0,\infty;L^2)} \le C\nu^2\epsilon^{1/2},$$

$$||\nabla u_0|| \le C\nu\epsilon^{-1/2}, ||f||_{L^{\infty}(0,\infty;L^2)} \le C\nu^2\epsilon^{-1/2}.$$

Here, N is the average operator with respect to the thin direction. We note that the first two conditions in the above are not so restrictive since Nu_0 and Nf are independent of the third variable and so they are in fact ϵ independent conditions.

In this paper, we consider the global existence of strong solutions in a long periodic domain, $\Omega = (0, \epsilon] \times (0, \epsilon] \times (0, l]$. We first prove in a simple way that

a global strong solution exists whenever the initial and the forcing functions satisfy for any $2 \le p \le \infty$ and L > 0,

(5)
$$\|\nabla u_0\|_{L^2} \le \frac{C\nu}{L}$$
 and $\|f\|_{L^p((0,\infty),L^2)} \le C\nu^{(2p-1)/p}\lambda_1^{(3p-4)/4p}$

together with a mild condition,

(6)
$$\frac{1}{L} \|u_0\|_{L^2} \le 1$$

for some universal constant C. Here, $\lambda_1=4\pi^2/l$ is the first eigenvalue of the Stokes operator. This result is obtained simply by considering a differential inequality for a product of norms, which is comparable to $H^{1/2}$ norm. The most natural choice of L in the condition (6) is $L=\sqrt{|\Omega|}$, which is not practically restrictive since it just means that the spatial average of the square of the velocity is bounded by a suitable constant. Then, when the domain is long rod type $\Omega=(0,\epsilon]\times(0,\epsilon]\times(0,t]$, the choice $L=\sqrt{|\Omega|}$ becomes of order ϵ and the bound on H^1 norm of the velocity in (5) is improved greatly compared to the case of thin domain. We also give a condition independent of the L^2 norm of the velocity. Concretely, we show that the global regularity is guaranteed if

$$\|\nabla u_0\| \le C\nu\epsilon^{-1/2}, \|f\|_{p,2} \le C\nu^{(2p-1)/p}\epsilon^{-1/2}$$

for any $2 \leq p \leq \infty$. The above condition exactly recovers (4) even for more general p and supports that the condition (4) might be enough for the global existence in a thin periodic domain under the periodic boundary condition.

This work has been partially done while the first author is visiting the University of Minnesota for a sabbatical year and he is grateful to the School of Mathematics for their warm hospitalities and specially to Prof. G. R. Sell, Vladimir Sverak and Luan Hoang.

2. Preliminary estimates

Throughout the paper, $\Omega = (0, \epsilon] \times (0, \epsilon] \times (0, l]$. Here, l is a fixed constant and $\epsilon > 0$ is a small parameter. For convenience's sake, we denote the two dimensional torus $D \equiv D_{\epsilon} = (0, \epsilon] \times (0, \epsilon]$. The function spaces we work with are

$$H = \{u \in L^2(\Omega) | \nabla \cdot u = 0, \int_{\Omega} u = 0\}$$

and $V = H \cap W^{1,2}(\Omega)$. It is well known that $\|\nabla u\|_{L^2}$ is an equivalent norm for V due to the Poincaré inequality. For convenience's sake, we also denote

$$\|\cdot\|_{L^p} = \|\cdot\|_p, \quad \|\cdot\|_2 = \|\cdot\|, \quad \|\cdot\|_{L^p(0,\infty;L^q(\Omega))} = \|\cdot\|_{p,q},$$

the Leray projection on $L^2(\Omega)$ into H by \mathbb{P} , and the Stokes operator by $A = \mathbb{P}(-\Delta)$. We define the bilinear form $B(u,v) = \mathbb{P}(u \cdot \nabla)v$ and the trilinear form b(u,v,w) by

$$b(u, v, w) = \langle B(u, v), w \rangle = \int_{\Omega} B(u, v) \cdot w dx.$$

We now define an orthogonal projection M on $L^2(\Omega_{\epsilon})$ by

(7)
$$Mu = \frac{1}{\epsilon^2} \int_0^{\epsilon} \int_0^{\epsilon} u(x_1, x_2, x_3) dx_1 dx_2$$

and denote $v \equiv Mu$ and $w \equiv (I - M)u$ for simplicity. Note that the above projection is different from the one in [6]. Here, $v = v(x_3)$ and $\nabla \cdot v = 0$. So, v_3 must be a constant in space. Since we assume (3) from the first, we then get

(8)
$$v_3 = \frac{1}{|\Omega|} \int v_3 = \frac{1}{|\Omega|} \int u_3 = 0.$$

It is clear that the following Poincaré inequality holds for $w \in H^1$ since Mw = 0:

$$||w||^2 \le C\epsilon^2 ||\nabla w||^2.$$

Further, w satisfies the following inequalities, which are basically Gargliardo-Nirenberg inequalities.

Lemma 2.1. Given $u \in V \cap D(A)$, let v = Mu and w = (I - M)u. We have

(10)
$$\|\nabla v\|_{\infty} \le \frac{C}{\epsilon} \|\nabla v\|^{1/2} \|Av\|^{1/2},$$

(11)
$$\|\nabla w\|_q \le C(\|\nabla_3 w\| \|w\| + \|w\|^2)^{1/2q} \|Aw\|^{\frac{q-1}{q}}, \quad 1 < q \le 3.$$

Here, all C's are independent of ϵ .

Proof. Since $w(\cdot, x_3)$ is average zero on D for any $x_3 \in (0, l]$, w satisfies the following two dimensional Gargliardo-Nirenberg inequality.

$$\|\nabla w\|_{L^q(D)}^q \le C \|\nabla^2 w\|_{L^2(D)}^{q-1} \|w\|_{L^2(D)}.$$

Here, C is independent from ϵ . In fact, the above inequality is scaling invariant. Integrating with respect to x_3 , we have

(12)
$$\int_0^l dx_3 \int_D |\nabla w|^q \le C \int_0^l dx_3 \left(\int_D |\nabla^2 w|^2 \right)^{\frac{q-1}{2}} \sup_{x_3} ||w||_{L^2(D)}(x_3).$$

While.

$$||w||_{L^{2}(D)}^{2}(b) \leq \left| \int_{a}^{b} dx_{3} \, \partial_{3} ||w||_{L^{2}(D)}^{2}(x_{3}) \right| + ||w||_{L^{2}(D)}^{2}(a)$$

$$\leq \int_{a}^{b} \int_{D} |\partial_{3}w||w|dx + ||w||_{L^{2}(D)}^{2}(a)$$

$$\leq ||\nabla_{3}w|| ||w|| + ||w||_{L^{2}(D)}^{2}(a).$$

Integrating the above with respect to a over (0, l], we have

$$\sup_{x_3} \|w\|_{L^2(D)}^2 \le \|\nabla_3 w\| \|w\| + \frac{1}{l} \|w\|^2.$$

Plugging the above into (12) and using the Hölder inequality, we have

$$\int_{\Omega} |\nabla w|^q \le C \|\nabla^2 w\|^{q-1} (\|\nabla_3 w\| \|w\| + \|w\|^2)^{1/2}.$$

Since $\|\nabla^2 w\| \leq C\|Aw\|$, we have the desired inequality (11). Similarly,

$$(\partial_3 v_i)^2(b) = 2 \int_a^b dx_3 \partial_3^2 v_i \partial_3 v_i + (\partial_3 v)^2(a).$$

There exists a such that $\partial_3 v_i(a) = 0$ since $\partial_3 v_i$ is average zero. Thus we have

$$(\nabla v_i)^2(b) \le C \int dx_3 |\nabla^2 v| |\nabla v| \le \frac{C}{\epsilon^2} ||\nabla v|| ||Av||.$$

Taking supremum with respect to b and adding them up for i = 1, 2, we have the desired result (10).

We now present the following estimates concerning the trilinear form b. We use the above lemma with q=3 to get the estimates.

Lemma 2.2. Let v and w be as before, we have

$$|b(w, w, Aw)| \le C||w||^{1/2}||\nabla w||^{1/2}||Aw||^2,$$

(14)
$$|b(v, w, Aw)|, |b(w, v, Aw)|, |b(w, w, Av)|$$

$$\leq C \|\nabla v\|^{1/2} \|Av\|^{1/2} \|w\|^{1/2} \|Aw\|^{3/2}.$$

Here, all C's are independent from ϵ .

Proof. First, by integration by parts,

$$b(w, w, Aw) = -\int (w \cdot \nabla)w \cdot \Delta w = \int (\nabla_j w \cdot \nabla)w \cdot \nabla_j w + w \cdot \nabla(\nabla_j w)\nabla_j w$$
$$= \int (\nabla_j w \cdot \nabla)w \cdot \nabla_j w.$$

Thus, using (11) with q = 3, (9), and the smallness of ϵ ,

$$|b(w, w, Aw)| \le C \|\nabla w\|_3^3 \le C \|Aw\|^2 (\|\nabla_3 w\|^{1/2} \|w\|^{1/2} + \|w\|)$$

$$\le C \|Aw\|^2 \|\nabla w\|^{1/2} \|w\|^{1/2}.$$

By similar argument,

$$b(v, w, Aw) = \int (\nabla_j v \cdot \nabla) w \cdot \nabla_j w.$$

Then, since v depends only on x_3 ,

$$|b(v, w, Aw)| \leq \int_0^l dx_3 |\nabla v| \int_D |\nabla w|^2$$

$$\leq C \|\nabla v\|_{L^{\infty}(0, l)} \|\nabla w\|^2 \leq C \|\nabla v\|^{1/2} \|Av\|^{1/2} \|\nabla w\| \|Aw\|$$

$$\leq C \|\nabla v\|^{1/2} \|Av\|^{1/2} \|w\|^{1/2} \|Aw\|^{3/2}.$$

Here, we used in the last line the interpolation inequality

(15)
$$\|\nabla f\|^2 = -\int f\Delta f \le \|f\| \|Af\|.$$

Similarly,

$$\begin{split} |b(w,v,Aw)| &\leq \int_0^l dx_3 |\nabla v| \|w\|_{L^2(D)} \|Aw\|_{L^2(D)} \\ &\leq C \|\nabla v\|_{L^\infty(0,l)} \|w\| \|Aw\| \leq C \|\nabla v\|^{1/2} \|Av\|^{1/2} \|w\| \|Aw\|^{3/2}, \\ |b(w,w,Av)| &= \left|\int \nabla_j w \cdot \nabla w \cdot \nabla_j v + w \cdot \nabla \nabla_j w \cdot \nabla_j v\right| \\ &\leq C \|\nabla v\|^{1/2} \|Av\|^{1/2} \|w\|^{1/2} \|Aw\|^{3/2}. \end{split}$$

3. Regularity

In this section, we give our main result. We first reformulate (1)-(2) in the standard nonlinear evolutionary equation on the Hilbert space V,

(16)
$$u_t + \nu A u + B(u, u) = \mathbb{P} f.$$

We shall consider solutions of (16) with the initial data u_0 and f = f(t) in the class

(17)
$$u_0 \in V, \quad f(t) \in L^p([0,\infty), H), \ p \ge 2.$$

We first present the following theorem, which is simple and shows the underlying idea of our result.

Theorem 3.1. Given any $p \ge 2$, the Navier-Stokes evolutionary equation (16) has a solution

$$u \in C^0([0,\infty), H) \cap L^\infty((0,\infty), V)$$

if

(18)
$$||u_0|| ||\nabla u_0|| + 2\nu^{-\frac{2p-2}{p}} \lambda_1^{-\frac{3p-4}{2p}} ||f||_{p,2}^2 \le \frac{\nu^2}{C^2}.$$

Here, λ_1 is the first eigenvalue of the Stokes operator, C is an absolute constant independent of ϵ . Moreover, in this case

(19)
$$\|\nabla u\|^2(t) \le \|\nabla u_0\|^2 + 4\nu^{-\frac{2p-2}{p}} \lambda_1^{-\frac{p-2}{p}} \|f\|_{p,2}^2$$

for all t > 0.

Proof. By taking the scalar product of (16) with u and using the fact that

$$\int B(u,u)udx = 0,$$

we find that

(20)
$$\frac{d}{dt}||u||^2 + 2\nu||\nabla u||^2 \le 2||f|| ||u||.$$

Since v depends only on x_3 and $v_3=0$, $\langle B(v,v),Av\rangle=0$ and b(v,v,w)=b(w,v,v)=b(v,w,v)=0. So,

$$\langle B(u,u), Au \rangle = \langle B(v,w), Aw \rangle + \langle B(w,v), Aw \rangle$$

$$+ \langle B(w,w), Av \rangle + \langle B(w,w), Aw \rangle$$

$$\leq C(\|\nabla v\|^{1/2} \|Av\|^{1/2} \|w\|^{1/2} \|Aw\|^{3/2} + \|w\|^{1/2} \|\nabla w\|^{1/2} \|Aw\|^2)$$

$$\leq C\|w\|^{1/2} \|\nabla u\|^{1/2} \|Au\|^2$$

by the orthogonality of v and w. Then, taking the scalar product of (16) with Au and using the above estimate, we obtain

$$\frac{d}{dt} \|\nabla u\|^2 + 2\nu \|Au\|^2 \le 2 \left| \int fAu \right| + \left| \int B(u, u)Au \right| \\
\le 2 \|f\| \|Au\| + C(\|w\| \|\nabla u\|)^{1/2} \|Au\|^2.$$

Now, we multiply (20) by $\|\nabla u\|^2$ and (21) by $\|u\|^2$ and adding them to have

$$\frac{d}{dt}(\|u\|^2\|\nabla u\|^2) + 2\nu\|\nabla u\|^4 + 2\nu\|u\|^2\|Au\|^2$$

$$\leq 2\|f\|\|u\|(\|\nabla u\|^2 + \|u\|\|Au\|) + C(\|u\|\|\nabla u\|)^{1/2}\|u\|^2\|Au\|^2.$$

By the Young inequality and (15), we have

$$2\|f\|\|u\|(\|\nabla u\|^2 + \|u\|\|Au\|) \le 4\|f\|\|u\|^2\|Au\|$$

$$\le 4\|f\|\frac{\|\nabla u\|^{1/2}}{\lambda_1^{1/4}}\|u\|^{1/2}\|u\|\|Au\|$$

$$\le \nu\|u\|^2\|Au\|^2 + \frac{4}{\nu\lambda_1^{1/2}}\|f\|^2\|u\|\|\nabla u\|.$$

Denoting $G^2 = ||u||^2 ||\nabla u||^2$, we thus arrive at

$$\frac{d}{dt}G^2 + \nu \lambda_1 G^2 \le \left[CG^{1/2} - \nu \right] \|u\|^2 \|Au\|^2 + \frac{4}{\nu \lambda_*^{1/2}} \|f\|^2 G.$$

If $G(t) \leq \frac{\nu^2}{C^2}$ for all t > 0,

$$\frac{d}{dt}G + \nu \lambda_1 G \le \frac{2}{\nu \lambda_1^{1/2}} ||f||^2.$$

Therefore, by the Grönwall inequality,

$$G \leq G(0)e^{-\nu\lambda_1 t} + \frac{2}{\nu\lambda_1^{1/2}} \int_0^t ||f||^2 (s)e^{\nu\lambda_1(s-t)} ds$$

$$\leq G(0) + \frac{2}{\nu\lambda_1^{1/2}} ||f||_{p,2}^2 \left(\frac{p-2}{p\nu\lambda_1}\right)^{(p-2)/p}$$

$$\leq G(0) + 2\left(\frac{p-2}{p}\right)^{\frac{p-2}{p}} \nu^{-\frac{2p-2}{p}} \lambda_1^{-\frac{3p-4}{2p}} ||f||_{p,2}^2$$

for any $p \geq 2$. Note that the above estimate holds true even for p=2 and ∞ . Since $((p-2)/p)^{(p-2)/p} \leq 1$, the typical continuation argument and (18) justifies the above argument and we indeed have $G(t) \leq \frac{\nu^2}{C^2}$ for all t>0. Furthermore, if $G(t) \leq \frac{\nu^2}{C^2}$, we apply the Hölder inequality to (21) to have

$$\frac{d}{dt} \|\nabla u\|^2 + \frac{\nu}{2} \lambda_1 \|\nabla u\|^2 \le \frac{2}{\nu} \|f\|^2.$$

Again, by the Grönwall inequality,

$$\|\nabla u\|^2(t) \le \|\nabla u_0\|^2 + \int_0^t \frac{2}{\nu} \|f\|^2(s) e^{\nu \lambda_1(s-t)/2} ds,$$

which gives (19) and finishes the proof.

The condition (18) is in a sense a condition of smallness of the initial data and external force. However, this condition allows for initial data with large H^1 norm provided that the L^2 norm of the initial data and f are small enough. In particular, when f = 0, the above theorem tells that there exists a globally regular solution if $||u_0||$ is small enough compared with $\nu^2 ||\nabla u_0||^{-1}$. As a corollary of the above theorem, we have the following.

Corollary 3.2. There exists a globally regular solution if initial data satisfies (5) and (6) with $L = \epsilon$ when $\Omega = [0, l] \times [0, \epsilon] \times [0, \epsilon]$.

Applying the projections M and (I - M) to the equation (16) and using MB(v,v) = B(v,v) = 0 and MB(v,w) = MB(w,v) = 0, we get the equation for v,

(23)
$$\frac{dv}{dt} + \nu Av = Mf - MB(w, w),$$

and the equation for w,

(24)
$$\frac{dw}{dt} + \nu Aw = (I - M)f - B(w, v) - B(v, w) - (I - M)B(w, w).$$

Theorem 3.3. There exists a globally regular solution u of (16) in Ω if, for some constant C,

(25)
$$\|\nabla u_0\|^2 + 2\nu^{-\frac{2p-2}{p}}\lambda_1^{-\frac{p-2}{p}}\|f\|_{p,2}^2 < \frac{\nu^2}{4C^2}\epsilon^{-1}.$$

Proof. We start from (21). By (9), (21) becomes

$$\frac{d}{dt}\|\nabla u\|^2 + 2\nu\|Au\|^2 \le 2\|f\|\|Au\| + C(\epsilon\|\nabla w\|\|\nabla u\|)^{1/2}\|Au\|^2.$$

Then,

$$\frac{d}{dt} \|\nabla u\|^2 + (\nu - C\epsilon^{1/2} \|\nabla u\|) \|Au\|^2 \le \frac{1}{\nu} \|f\|^2$$

since $\|\nabla u\| \ge \|\nabla w\|$. Now, we apply the Grönwall lemma to the above inequality with typical smallness argument. That is, since $\|\nabla u_0\| < \frac{\nu}{2C} \epsilon^{-1/2}$

from (25), if $\|\nabla u\|(t) > \frac{\nu}{2C}\epsilon^{-1/2}$ for some t > 0, there would be the first time t = T such that $\|\nabla u\|(T) = \frac{\nu}{2C}\epsilon^{-1/2}$. However, for 0 < t < T,

$$\frac{d}{dt} \|\nabla u\|^2 + \frac{\nu}{2} \lambda_1 \|\nabla u\|^2 < \frac{1}{\nu} \|f\|^2.$$

Applying the Grönwall lemma to the above inequality, we would have

$$\|\nabla u\|^{2}(T) < \|\nabla u_{0}\|^{2} + \frac{1}{\nu} \int_{0}^{T} \|f\|^{2} e^{\nu \lambda_{1}(s-T)/2} ds$$

$$\leq \|\nabla u_{0}\|^{2} + \frac{1}{\nu} \left(\frac{2(p-2)}{\nu \lambda_{1} p}\right)^{(p-2)/p} \|f\|_{p,2}^{2}$$

$$\leq \|\nabla u_{0}\|^{2} + 2\nu^{-\frac{2p-2}{p}} \lambda_{1}^{-\frac{p-2}{p}} \|f\|_{p,2}^{2}.$$

If (25) holds true, this leads a contraction. Therefore, $\|\nabla u\|^2 < \frac{\nu^2}{4C^2}\epsilon^{-1}$ for all t>0 and we finish the proof.

Clearly, the condition (25) in particular implies that there exists a globally regular solution if, for suitable C,

$$\|\nabla u_0\| \le C\nu\epsilon^{-1/2}, \|f\|_{p,2} \le C\nu^{(2p-1)/p}\epsilon^{-1/2}$$

since $\lambda_1 = \frac{4\pi^2}{l^2}$ is fixed.

Acknowledgements. The first author was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD, Basic Research Promotion Fund)(KRF-2007-521-C00021) and the second author was supported in part by KRF 2009-0074605.

References

- [1] J. D. Avrin, Large-eigenvalue global existence and regularity results for the Navier-Stokes equations, J. Differential Equations 127 (1996), no. 2, 365–390.
- [2] P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
- [3] H. Fujita and T. Kato, On the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 16 (1964), 269-315.
- [4] E. Hopf, Über die Anfangswertaufgabe fur die hydrodynamischen Grudgleichungen, Math. Nachr. 4 (1951), 213–231.
- [5] D. Iftimie, The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations, Bull. Soc. Math. France 127 (1999), no. 4, 473-517.
- [6] D. Iftimie and G. Raugel, Some results on the Navier-Stokes equations in thin 3D domains, J. Differential Equations 169 (2001), no. 2, 281–331.
- [7] D. Iftimie, G. Raugel, and G. R. Sell, Navier-Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J. 56 (2007), no. 3, 1083–1156.
- [8] M. Kwak and N. Kim, Remark on global existence for 3D Navier-Stokes equations in Lipschitz domain, Submitted (2007).
- [9] I. Kukavica and M. Ziane, Regularity of the Navier-Stokes equation in a thin periodic domain with large data, Discrete Contin. Dyn. Syst. 16 (2006), no. 1, 67–86.
- [10] _____, On the regularity of the Navier-Stokes equation in a thin periodic domain, J. Differential Equations 234 (2007), no. 2, 485–506.

- [11] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193–248.
- [12] S. Mongtgomery-Smith, Global regularity of the Navier-Stokes equations on thin three dimensional domains with periodic boundary conditions, Electron. J. Differential Equations 1999 (1999), no. 11, 1–19.
- [13] G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), no. 3, 503–568.
- [14] G. R. Sell and Y. You, *Dynamics of Evolutionary Equations*, Applied Math. Sciences 143, Springer, Berlin, 2002.
- [15] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No. 66, SIAM, Philadelphia, 1995.
- [16] R. Temam and M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1 (1996), no. 4, 499–546.

Namkwon Kim Department of Mathematics Chosun University Kwangju 501-759, Korea

 $E ext{-}mail\ address: kimnamkw@chosun.ac.kr}$

MINKYU KWAK
DEPARTMENT OF MATHEMATICS
CHONNAM NATIONAL UNIVERSITY
KWANGJU 500-757, KOREA
E-mail address: mkkwak@jnu.ac.kr