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ABSTRACT. We consider the global existence of strong solutions of the 3D incompressible
Navier-Stokes equations in a thin periodic domain. We present a simple proof that a strong
solution exists globally in time when the initial velocity in H1 and the forcing function in
Lp(0,∞;L2), 2 ≤ p ≤ ∞ satisfy certain condition. This condition is basically similar to that
by Iftimie and Raugel[7], which covers larger and larger initial data and forcing functions as
the thickness of the domain ϵ tends to zero.

1. INTRODUCTION

We consider the incompressible Navier-Stokes equations,

ut − ν△u+ (u · ∇)u+∇p = f, (1.1)
∇ · u = 0, (1.2)

in a thin periodic domain Ω = T 3 = [0, l1] × [0, l2] × [0, ϵ], 0 < ϵ << l1, l2. Here u denotes
the velocity of a homogeneous, viscous incompressible fluid, f is the density of force per unit
volume, p denotes the pressure, and ν is the kinematic viscosity. We require that the forcing
function f and the initial data u0 satisfy

∇ · f = ∇ · u0 = 0.

We assume in addition that ∫
Ω
fdx =

∫
Ω
udx = 0, (1.3)
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which could be achieved by the Galilean transformation with suitable vectors c(t) and e,

u(x, t) → u(x+ c(t) + et, t)− dc

dt
− e.

Indeed, we can take

c(t) =

∫ t

0

∫ r

0

∫
f(x, s)dxdsdr, e =

∫
u0dx.

By the classical results of Leray and Hopf ([12], [5]), there exists a global weak solution of
the Navier-Stokes equations in a three dimensional torus. It is also known that the solution
becomes necessarily strong(regular) for all regular data in a two dimensional domain. But in a
three dimensional domain, global strong solutions have only been guaranteed for small initial
data(See, for example, [3], [4], [15], [16] and the references therein).

In [14], Raugel and Sell treated the problem on thin periodic domain and they obtained a
significant existence result on global regular solutions. The main idea is that if the thickness
of the domain is small enough, the solution of the Navier-Stokes equations is close to the 2D
Navier-Stokes equations. They proved that there are large sets R(ϵ) ⊂ H1(Ω) and S(ϵ) ⊂
L∞((0,∞), L2(Ω)) such that if u(0) = u0 ∈ R(ϵ) and f ∈ S(ϵ), then there exists a strong
solution u(t) that remains in H1(Ω) for all t ≥ 0. The sets R(ϵ) and S(ϵ) get larger and larger
as ϵ → 0.

Since then, there have been many improvements on the estimates of the size of these sets
R(ϵ) and S(ϵ) under various boundary conditions(see [2], [6], [13], [7], [8], [9], [10], [17]
and the references therein). Roughly, under various boundary conditions except the periodic
boundary condition, it has been shown that if

∥u0∥H1 ≤ Cϵ−1/2 and ∥f∥L∞((0,∞),L2) ≤ Cϵ−1/2 (1.4)

for some constant C = C(ν), then the corresponding global strong solution exists(see [2],
[17]). We note that the above condition can cover very large initial data and forcing functions
if ϵ > 0 is small enough. However, under the periodic boundary condition, it is not known
whether (1.4) implies the existence of global strong solutions. Under the periodic boundary
condition, it is shown in [11] that, when f = 0, the existence of the global strong solution is
guaranteed under the condition

∥u0∥H1 ≤ Cϵ−1/2| log ϵ|1/2,

and in [7] under the following condition

∥(Mu0)3∥ ≤ Cνϵ1/2, ∥Mf∥L∞(0,∞;L2) ≤ Cν2ϵ1/2,

∥∇u0∥ ≤ Cνϵ−1/2, ∥f∥L∞(0,∞;L2) ≤ Cν2ϵ−1/2.

Here, M is the average operator with respect to the thin direction. We note that the first two
conditions in the above are not so restrictive since Mu0 and Mf are independent of the third
variable and so they are in fact ϵ independent conditions.
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In this paper, we consider the global existence of strong solutions in a thin periodic domains
and improve the result in [7] in a simple way for forcing function f ∈ Lp([0,∞);L2), 2 ≤
p ≤ ∞. Concretely, we show in a simple way that the global regularity is guaranteed if

∥(Mu0)3∥ ≤ Cνϵ1/2, ∥Mf∥Lp(0,∞;L2) ≤ Cν(2p−1)/pϵ1/2, (1.5)

∥∇u0∥ ≤ Cνϵ−1/2, ∥f∥Lp(0,∞;L2) ≤ Cν(2p−1)/pϵ−1/2 (1.6)

for some 2 ≤ p ≤ ∞. The above result generalizes the result in [7] to the case p ∈ [2,∞].
This work has been partially done while the first author is visiting the University of Min-

nesota for a sabbatical year and he is grateful to the School of Mathematics for their warm
hospitalities and specially to Prof. G. R. Sell, Vladimir Sverak and Luan Hoang.

2. PRELIMINARY ESTIMATES

From now on, Ω is assumed to be a three dimensional thin torus, [0, l1] × [0, l2] × [0, ϵ],
0 < ϵ < 1 and l1, l2 > 0 are fixed. Also, Ω̃ = (0, l1)× (0, l2). We denote

H = {u ∈ L2(Ω)|∇ · u = 0,

∫
Ω
u = 0}

and V = H ∩W 1,2(Ω). It is well known that ∥∇u∥L2 is an equivalent norm for V due to the
Poincaré inequality. For convenience’s sake, we also denote

∥ · ∥Lp = ∥ · ∥p, ∥ · ∥2 = ∥ · ∥, ∥ · ∥Lp(0,∞;Lq(Ω)) = ∥ · ∥p,q,

the Leray projection on L2(Ω) into H by P, and the Stokes operator by A = P(−∆). We
define the bilinear form B(u, v) = P(u · ∇)v and the trilinear form b(u, v, w) by

b(u, v, w) =< B(u, v), w >=

∫
Ω
B(u, v) · wdx.

We now define an orthogonal projection M on L2(Ω) by

Mu =
1

ϵ

∫ ϵ

0
u(x1, x2, s)ds (2.1)

and denote v = Mu and w = (I −M)u for simplicity. We recall that the following Poincaré
inequality holds for w since Mw = 0:

∥w∥2 ≤ ϵ2

4π2
∥∇w∥2. (2.2)

Lemma 2.1. For w ∈ V with Mw = 0, there exist absolute constants K1 and K2 independent
of ϵ such that

∥w∥3 ≤ K1∥w∥1/2∥∇w∥1/2, (2.3)

and
∥∇v∥Lq ≤ K2ϵ

2−q
2q ∥∇2v∥

q−2
q ∥∇v∥2/q, 2 ≤ ∀q ≤ 4. (2.4)
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Proof. Since w(·, x3) is average zero on [0, ϵ] for any (x1, x2) ∈ Ω̃, there exists a ∈ [0, ϵ] with
w(x1, x2, a) = 0. Then,

|w|3(·, x3) =
∣∣∣∣∫ x3

a
dx3∂3w

2

∣∣∣∣1/2 |w|2(·, x3) ≤ |w|2(x)∥w∥1/2
L2(0,ϵ)

∥∇w∥1/2
L2(0,ϵ)

.

Then, integrating the above on Ω,∫
|w|3 ≤

∫
Ω̃
∥w∥1/2

L2(0,ϵ)
∥∇w∥1/2

L2(0,ϵ)

∫
dx3|w|2

≤
(∫

Ω̃
∥w∥10/3

L2(0,ϵ)
dx

)3/4

∥∇w∥1/2.

Denoting

Q(x1, x2) ≡
∫

dx3|w|2,

and applying the Hölder and Sobolev inequality to Q in Ω̃, we have∫
Ω̃
Q5/3dx ≤

(∫
Ω̃
Q

)1/3(∫
Ω̃
Q2

)2/3

≤ C∥w∥2/3
(
∥Q∥L1(Ω̃) + ∥∇Q∥L1(Ω̃)

)4/3

≤ C∥w∥2/3
(
∥w∥2 +

∫
Ω̃

∫ ϵ

0
|∇w||w|

)4/3

≤ C∥w∥2/3
(
∥w∥2 + ∥∇w∥∥w∥

)4/3
.

Thus, plugging the above into the previous inequality and using (2.2), we obtain (2.3).
Next, we show (2.4). Since v is two dimensional and average zero on Ω̃, v satisfies the

following two dimensional Gargliardo-Nirenberg inequality.

∥∇v∥q
Lq(Ω̃)

≤ C∥∇2v∥q−2

L2(Ω̃)
∥∇v∥2

L2(Ω̃)
.

Integrating the above with respect to x3, we then have∫
dx3

∫
Ω̃
|∇v|q ≤ Cϵ

1−(q−1)
2

(∫
Ω
|∇2v|2

) q−2
2

∥v∥2,

which gives (2.4). �

We now present estimates for the trilinear form b(·, ·, ·).

Lemma 2.2. Given u ∈ V , let v = Mu and w = (I −M)u. We have

|b(w,w3, v3)| ≤ Cϵ5/2∥∇u∥∥Au∥2, (2.5)

|b(v, w,Aw)|, |b(w, v,Aw)|, |b(w,w,Av)| ≤ Cϵ1/2∥∇u∥∥Au∥2, (2.6)
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|b(v, v, Av)| ≤ Cϵ−1/2∥∇v3∥∥∇v∥∥Av∥, (2.7)

|b(w,w,Aw)| ≤ Cϵ1/2∥∇w∥∥Aw∥2. (2.8)
Here, all C = C(K1,K2)’s are independent of ϵ.

Proof. By the Hölder inequality, (2.3), and (2.4),

|b(w,w3, v3)| =
∣∣∣∣∫ (w · ∇)w3 · v3

∣∣∣∣ = ∣∣∣∣∫ (w · ∇)v3 · w3

∣∣∣∣
≤ ∥w∥∥w∥3∥∇v3∥6 ≤ Cϵ−1/3∥w∥3/2∥∇w∥1/2∥∇v∥1/3∥Av∥2/3.

Further, by (2.2),

|b(w,w3, v3)| ≤ Cϵ5/2∥∇w∥2/3∥Aw∥4/3∥∇v∥1/3∥Av∥2/3.
This verifies (2.5). Next, for b(v, w,Aw), we use sequentially integration by parts, and diver-
gence theorem to have

b(v, w,Aw) = −
∫

(v · ∇)w ·∆w =

∫
(∇jv · ∇)w · ∇jw + v · ∇(∇jw)∇jw

=

∫
(∇jv · ∇)w · ∇jw.

Then, since M∇w = 0, applying (2.3) to ∇w and using (2.4), and (2.2),

|b(v, w,Aw)| ≤ ∥∇v∥6∥∇w∥3∥∇w∥

≤ Cϵ−1/3∥∇v∥1/3∥Av∥2/3∥∇w∥3/2∥Aw∥1/2

≤ Cϵ1/2∥∇v∥1/3∥Av∥2/3∥∇w∥2/3∥Aw∥4/3.
For |b(w, v,Aw)|, again by (2.3), (2.4), and (2.2), we have

|b(w, v,Aw)| ≤ ∥∇v∥6∥w∥3∥Aw∥

≤ Cϵ−1/3∥∇v∥1/3∥Av∥2/3∥w∥1/2∥∇w∥1/2∥Aw∥

≤ Cϵ1/2∥∇v∥1/3∥Av∥2/3∥∇w∥2/3∥Aw∥4/3.
Similarly, by integration by parts and the above estimates

|b(w,w,Av)| ≤
∣∣∣∣∫ ∇w · ∇w · ∇v

∣∣∣∣+ ∣∣∣∣∫ w · ∇2w · ∇v

∣∣∣∣
≤ C∥∇v∥1/2∥Av∥2/3∥∇w∥2/3∥Aw∥4/3.

On b(v, v, Av), by the two dimensionality of v and integration by parts,

b(v, v, Av) = b(v, v3, Av3) =

∫
∇v · ∇v3 · ∇v3.

Then, by (2.4),

|b(v, v, Av)| ≤ ∥∇v∥∥∇v3∥24 ≤ C∥∇v∥ϵ−1/2∥∇v3∥∥Av3∥.
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Finally, by integration by parts, (2.3), and (2.2),

|b(w,w,Aw)| =
∣∣∣∣∫ ∇w · ∇w · ∇w

∣∣∣∣ ≤ C∥∇w∥3/2∥Aw∥3/2 ≤ Cϵ1/2∥∇w∥∥Aw∥2.

�

3. REGULARITY

In this section, we give our regularity result and its proof. We first reformulate (1.1-1.2) in
the standard nonlinear evolutionary equation on the Hilbert space V ,

ut + νAu+B(u, u) = Pf. (3.1)

We shall consider solutions of (3.1) with the initial data u0 and f = f(t) in the class

u0 ∈ V, f(t) ∈ Lp([0,∞),H), p ≥ 2. (3.2)

Theorem 3.1. For any ϵ < 1, there exists a globally regular solution u of (3.1) if

∥∇u0∥2 + ν−(2p−2)/p∥f∥2p,2 <
ν2

4C
ϵ−1 (3.3)

∥(Mu0)3∥2 + ν−(2p−2)/p∥Mf∥2p,2 <
ν2

4C
ϵ (3.4)

for some C > 0 independent of ϵ.

Proof. We shall write differential inequalities for ∥∇u∥ and ∥v3∥ at the same time and derive
an estimate for the suitable sum of them. Since∫

B(u, u)3v3dx =

∫
u · ∇w3v3 =

∫
w · ∇w3v3,

taking the scalar product of (3.1) with v3 and using (2.5), we have
d

dt
∥v3∥2 + 2ν∥∇v3∥2 ≤ 2∥Mf∥ ∥v3∥+ 2ϵ5/2∥∇u∥∥Au∥2. (3.5)

While, using (2.6)-(2.8) and the orthogonality of v and w,

| < B(u, u), Au > | = | < B(v, v), Av > + < B(w,w), Aw >

+ < B(v, w), Aw > + < B(w, v), Aw > + < B(w,w), Av > |

≤ Cϵ−1/2||∇v||||∇v3||||Au||+ Cϵ1/2∥∇u∥∥Au∥2.
Taking the scalar product of (3.1) with Au and using the above estimate and the Young inequal-
ity, we obtain

d

dt
∥∇u∥2 + 2ν∥Au∥2 ≤ 2

∣∣∣∣∫ fAu

∣∣∣∣+ ∣∣∣∣∫ B(u, u)Au

∣∣∣∣
≤ C

∥f∥2

ν
+ ν∥Au∥2 + ν

||∇v3||2

ϵ2

+C
ϵ

ν
||∇v||2||Au||2 + C(ϵ1/2∥∇u∥)∥Au∥2. (3.6)
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Now, we divide (3.5) by ϵ and multiply (3.6) by ϵ and add them to have

d

dt
(ϵ∥∇u∥2 + ∥v3∥2

ϵ
) + νϵ∥Au∥2 + ν

||∇v3||2

ϵ

≤ C
ϵ∥f∥2

ν
+ (C

ϵ

ν
||∇u||2 + Cϵ1/2∥∇u∥)∥Au∥2

+
2

ϵ
∥Mf∥ ∥v3∥. (3.7)

By the Young inequality and the Poincaré inequality for v,

Cϵ1/2∥∇u∥ ≤ 1

2
ν + C

ϵ

ν
||∇u||2,

2

ϵ
∥Mf∥ ∥v3∥ ≤ C

ϵ
∥Mf∥ ∥∇v3∥ ≤ C

∥Mf∥2

νϵ
+

ν

2ϵ
∥∇v3∥2.

Thus, denoting G2 = ϵ∥∇u∥2 + ∥v3∥2
ϵ , (3.7) becomes

d

dt
G2 + (

ν

2
− C

ν
ϵ∥∇u∥2)ϵ∥Au∥2 + ν

2

∥∇v3∥2

ϵ
≤ C

νϵ
∥Mf∥2 + Cϵ

∥f∥2

ν
≡ Ch.

By the Poincaré inequality, we arrive at

d

dt
G2 +

ν

4
λ1G

2 + (
ν

4
− C

ν
G2)ϵ∥Au∥2 ≤ Ch.

Here, λ1 is the first eigenvalue of A. Now, we apply the Grönwall lemma to the above inequality
with typical smallness argument. That is, let G(0) < ν2

4C initially and suppose that G(t)2 > ν2

4C

for some t > 0. Then there would be the first time t = T such that G(T ) = ν2

2C . However, for
0 < t ≤ T ,

d

dt
G2 +

ν

4
λ1G

2 ≤ Ch.

Then, applying the Grönwall lemma to the above inequality, we would have

G(T )2 ≤ G(0)2 + C

∫ T

0
heνλ1(s−T )/4ds

≤ G(0)2 + C∥h∥Lp/2

(∫ T

0
epνλ1(s−T )/4(p−2)

) p−2
p

≤ G(0)2 + C∥h∥Lp/2

(
4(p− 2)

νpλ1

)(p−2)/p

≤ G(0)2 + Cν−(p−2)/p

∥∥∥∥C

νϵ
∥Mf∥2 + Cϵ

∥f∥2

ν

∥∥∥∥
Lp/2

≤ G(0)2 + Cν−(2p−2)/p(ϵ−1∥Mf∥2p,2 + ϵ∥f∥2p,2).
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Note that the above estimate holds true even for p = ∞. Redefining C if necessary, this
leads a contraction with (3.3-3.4). Therefore, G2 < ν2

4C for all t > 0 and u becomes globally
regular. �

Clearly, the condition (3.3-3.4) is in particular satisfied by (1.5-1.6). The condition (3.3-
3.4) is in a sense a condition of smallness of the initial data and external force. However, this
condition allows for initial data with large H1 norm when ϵ is small enough.
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