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EXISTENCE AND LONG-TIME BEHAVIOR OF

SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS

WITH INFINITE DELAY

Cung The Anh and Dang Thi Phuong Thanh

Abstract. In this paper we study the first initial boundary value prob-
lem for the 3D Navier-Stokes-Voigt equations with infinite delay. First,

we prove the existence and uniqueness of weak solutions to the prob-

lem by combining the Galerkin method and the energy method. Then
we prove the existence of a compact global attractor for the continuous

semigroup associated to the problem. Finally, we study the existence and
exponential stability of stationary solutions.

1. Introduction

Let Ω be a bounded domain in R3 with boundary ∂Ω. In this paper we con-
sider the following three-dimensional Navier-Stokes-Voigt (sometimes written
Voight) equations with infinite delay:
(1.1)

∂tu− ν∆u− α2∆(∂tu) + (u · ∇)u+∇p = f + F (ut) in (0,+∞)× Ω,

∇ · u = 0 in (0,+∞)× Ω,

u(t, x) = 0 on (0,+∞)× ∂Ω,

u(s, x) = φ(s, x), s ∈ (−∞, 0], x ∈ Ω,

where u = u(t, x) = (u1, u2, u3) is the unknown velocity vector, p = p(t, x)
is the unknown pressure, ν > 0 is the kinematic viscosity coefficient, α is a
length-scale parameter characterizing the elasticity of the fluid, f = f(x) is a
given force field, ut is the function defined by the relation ut(s) = u(t+ s), s ∈
(−∞, 0].

The Navier-Stokes-Voigt equations were introduced by Oskolkov in [23] as
a model of motion of certain linear viscoelastic fluids. This system was also
proposed by Cao, Lunasin and Titi in [4] as a regularization, for small values
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of α, of the 3D Navier-Stokes equations for the sake of direct numerical sim-
ulations. In the past years, the existence and long-time behavior of solutions
in terms of existence of attractors for the 3D Navier-Stokes-Voigt equations
has attracted the attention of many mathematicians in both autonomous and
non-autonomous cases (cf. [2, 9, 10, 12, 16, 17, 23, 24, 28]). We also refer the in-
terested reader to [3,22,29] for recent results on the decay rates of solutions to
the Navier-Stokes-Voigt equations in the whole space R3.

On the other hand, there are situations in which the model is better de-
scribed if some terms containing delays appear in the equations. These delays
may appear, for instance, when one wants to control the system (in a certain
sense) by applying a force which takes into account not only the present state
but its history, either the finite time history (bounded delay) or the whole past
(unbounded or infinite delay). In the past years, equations of Navier-Stokes
type with delays have been studied in [6–8], etc, for the case of finite delays, see
also a recent survey paper [5]; and in [1,13,14,19–21,25] for the case of infinite
delays. The Navier-Stokes-Voigt equations with finite delays or with memory
have been studied recently in [11,18,26]. However, as far as we know, the infi-
nite delay case, the more delicate case due to the unboundedness of the delay
involved, has not been studied before for the Navier-Stokes-Voigt equations.
This is the main motivation of our study in the present paper.

As noticed in [17], the presence of the regularizing term −α2∆ut in the
Navier-Stokes-Voigt equations has some important consequences. First, the
natural energy space (for weak solutions) of the Navier-Stokes-Voigt equations
is V instead of H in the case of the Navier-Stokes equations, and we can prove
the global well-posedness even in the case of three dimensions. However, the
Navier-Stokes-Voigt equations do not have a parabolic character, as Navier-
Stokes equations do, behaving instead as a damped hyperbolic system. Thus,
the associated semigroup is only weakly dissipative, and this leads to the fact
that the proof of existence of a global attractor is more involved because we
have to check the asymptotic compactness of the associated semigroup directly.
On the other hand, it is known that there are numerous technical difficulties
in dealing with partial differential equations with infinite delays due to the
unboundedness of the delay involved. These introduces a major obstacle for
studying the existence and asymptotic behavior of solutions, in particular, in
passing to the limit in the nonlinear term and especially in the delay term.
In this paper, to overcome these difficulties, we try to exploit and combine
the Galerkin method and the energy method, and particularly, the techniques
dealing with the infinite delay used in [1, 13,19–21,25].

Let us recall functions spaces, operators, inequalities and notations which
are frequently used in the paper.

Denote

(u, v) :=

∫
Ω

3∑
j=1

ujvj dx, u = (u1, u2, u3), v = (v1, v2, v3) ∈ (L2(Ω))3,
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and

((u, v)) :=

∫
Ω

3∑
j=1

∇uj · ∇vj dx, u = (u1, u2, u3), v = (v1, v2, v3) ∈ (H1
0 (Ω))3,

and the associated norms |u|2 := (u, u), ‖u‖2 := ((u, u)).
Let

V =
{
u ∈ (C∞0 (Ω))3 : ∇ · u = 0

}
.

Denote by H the closure of V in (L2(Ω)3), and by V the closure of V in
(H1

0 (Ω)3). It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the injections are dense and
continuous. We will use ‖·‖∗ for the norm in V ′, and 〈·, ·〉 for the duality pairing
between V and V ′. Denote by P the Helmholtz-Leray orthogonal projection
in (H1

0 (Ω))3 onto the space V .
We now define the trilinear form b by

b(u, v, w) =

3∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx,

whenever the integrals make sense. It is easy to check that if u, v, w ∈ V , then

b(u, v, w) = −b(u,w, v).

Hence

b(u, v, v) = 0, ∀u, v ∈ V.
Set A : V → V ′ by 〈Au, v〉 = ((u, v)), B : V × V → V ′ by 〈B(u, v), w〉 =

b(u, v, w). Then Au = −P∆u for all u ∈ D(A).
Using Hölder’s inequality and Ladyzhenskaya’s inequality in three dimen-

sions:

‖u‖L4 ≤ c|u|1/4‖u‖3/4, ∀u ∈ H1
0 (Ω),

one can prove the following lemma.

Lemma 1.1 ([27]). We have for all u, v, w ∈ V ,

|b(u, v, w)| ≤ c

{
|u|1/4‖u‖3/4‖v‖|w|1/4‖w‖3/4

λ
−1/4
1 ‖u‖‖v‖‖w‖,

where λ1 > 0 is the first eigenvalue of the Stokes operator A defined above. In
particular,

b(u, v, u)| ≤ c|u|1/2‖u‖3/2‖v‖ for all u, v ∈ V.(1.2)

As we know, the first step in studying differential equations with infinite
delays is to choose a suitable phase space. There are several phase spaces which
allow us to deal with infinite delays (see e.g. [15]). In this paper, inspired by
recent works [1, 13,19–21,25], we will use the following phase space

Cγ(V ) = {ϕ ∈ C((−∞, 0];V ) : ∃ lim
s→−∞

eγsϕ(s) ∈ V } for some γ > 0.
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This is a Banach space with the norm

‖ϕ‖γ := sup
s∈(−∞,0]

eγs‖ϕ(s)‖.

In order to study problem (1.1), we make the following assumptions:

(H1) f ∈ V ′;
(H2) F : Cγ(V )→ (L2(Ω))

3
satisfies

(i) F (0) = 0,
(ii) there exists a constant LF > 0 such that for all ξ, η ∈Cγ(V ),

|F (ξ)− F (η)| ≤ LF ‖ξ − η‖γ .

It is noticed that the assumption F (0) = 0 is not restrictive because it is
made for the convenience of the presentation only. Indeed, if F (0) 6= 0, then

we put F̂ (ut) = F (ut) − F (0) and f̂ = f + F (0), then F̂ and f̂ will satisfy
the assumptions (H1)-(H2) above. In particular, from (H2) we will have
|F (ut)| ≤ LF ‖ut‖γ for all ut ∈ Cγ(V ).

We now give an example of the delay term F (ut) (cf. [21]). Let F : Cγ(V )→
(L2(Ω))3 be defined as follows

F (ξ) =

∫ 0

−∞
G(s, ξ(s))ds, ∀ξ ∈ Cγ(V ),

where the function G : (−∞, 0)×R3 → R3 satisfies the following assumptions:

(1) G(s, 0) = 0 for all s ∈ (−∞, 0);
(2) There exists a function κ : (−∞, 0)→ (0,∞) such that

‖G(s, u)−G(s, v)‖R3 ≤ κ(s)‖u− v‖R3 , ∀u, v ∈ R3,∀s ∈ (−∞, 0),

and the function κ satisfies that κ(·)e−(γ+ε). ∈ L2(−∞, 0) for some
ε > 0.

Then the function F satisfies (H2). Indeed, (H2-i) is obviously satisfied, for
(H2-ii) we have

|F (ξ)− F (η)|2

=

∫
Ω

(∫ 0

−∞
κ(s)‖ξ(s)(x)− η(s)(x)‖R3ds

)2

dx

≤
∫

Ω

(∫ 0

−∞
κ2(s)e−2(γ+ε)sds

)(∫ 0

−∞
e2(γ+ε)s‖ξ(s)(x)− η(s)(x)‖2R3ds

)
dx

= ‖κ(·)e−(γ+ε).‖2L2(−∞,0)

∫ 0

−∞

∫
Ω

e2(γ+ε)s‖ξ(s)(x)− η(s)(x)‖2R3dxds

≤ ‖κ(·)e−(γ+ε).‖2L2(−∞,0)

[
sup

s∈(−∞,0]

e2γs

∫
Ω

‖ξ(s)(x)− η(s)(x)‖2R3dx
] ∫ 0

−∞
e2εsds

= ‖κ(·)e−(γ+ε).‖2L2(−∞,0)‖ξ − η‖
2
γ

1

2ε
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= L2
F ‖ξ − η‖2γ .

The plan of the paper is as follows. In Section 2, we prove the existence and
uniqueness of weak solutions to problem (1.1) by using the Galerkin method,
the energy method and the Gronwall inequality technique. In Section 3, we
prove the existence of a global attractor for the continuous semigroup gener-
ated by weak solutions to the problem. The existence, uniqueness and global
stability of stationary solutions are studied in the last section.

2. Existence and uniqueness of weak solutions

Definition 2.1. A weak solution on the interval (0, T ) of problem (1.1) is a
function u ∈ C((−∞, T ];V ) such that du

dt ∈ L2(0, T ;V ), u0 = φ, and for all
v ∈ V we have

(2.1)

d

dt
(u(t), v) + ν((u(t), v)) + α2((∂tu(t), v)) + b(u(t), u(t), v)

= 〈f, v〉+ (F (ut), v)

in the sense of distributions in D′(0, T ).

It is noticed that if u is a weak solution of (1.1) on (0, T ), then u satisfies
the following energy equality

|u(t)|2 + α2‖u(t)‖2 + 2ν

∫ t

s

‖u(r)‖2dr

= |u(s)|2 + α2‖u(s)‖2 + 2

∫ t

s

[
〈f, u(r)〉+ (F (ur), u(r))

]
dr for all s, t ∈ [0, T ].

Theorem 2.1. Let φ ∈ Cγ(V ) and T > 0 be given. Then, there exists a unique
weak solution u of problem (1.1) on the interval (0, T ).

Proof. (i) Uniqueness. Let u, v be two weak solutions of problem (1.1) with
the same initial condition. Setting w = u− v, we have

1

2

d

dt
(|w|2 + α2‖w‖2) + ν‖w‖2 + b(u, u, w)− b(v, v, w) = (F (ut)− F (vt), w).

Integrating from 0 to t and noticing that b(u, u, w)− b(v, v, w) = b(w, v, w), we
obtain

|w(t)|2 + α2‖w(t)‖2 + 2ν

∫ t

0

‖w(s)‖2ds

= − 2

∫ t

0

b(w(s), v(s), w(s))ds+ 2

∫ t

0

(
F (us)− F (vs), w(s)

)
ds.

Since w(s) = 0,∀s ≤ 0, we deduce that

‖ws‖γ = sup
θ≤0

eγθ‖w(s+ θ)‖ ≤ sup
θ∈[−s;0]

eγθ‖w(s+ θ)‖ for 0 ≤ s ≤ T.
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Because of (H2-ii), we have∣∣∣2 ∫ t

0

(
F (us)− F (vs), w(s)

)
ds
∣∣∣ ≤ 2LF

∫ t

0

‖ws‖γ |w(s)|ds.

On the other hand,∣∣∣2∫ t

0

b(w(s), v(s), w(s))ds
∣∣∣ ≤ 2c

∫ t

0

‖v(s)‖ ‖w(s)‖2 ds

≤ 2ν

∫ t

0

‖w(s)‖2ds+
c2

2ν

∫ t

0

‖w(s)‖2‖v(s)‖2ds.

Therefore,

|w(t)|2 + α2‖w(t)‖2 ≤ c2

2ν

∫ t

0

‖w(s)‖2‖v(s)‖2ds+ 2LF

∫ t

0

‖ws‖γ |w(s)|ds.

Since

‖ws‖γ |w(s)| ≤ C1 sup
r∈[0,s]

‖w(r)‖2,

we arrive at

sup
r∈[0,t]

(
|w(r)|2 + α2‖w(r)‖2

)
≤
∫ t

0

( c2

2α2ν
‖v(s)‖2 +

2C1LF
α2

)
sup
r∈[0,s]

(|w(r)|2 + α2‖w(r)‖2)ds.

Applying the Gronwall inequality completes the proof of uniqueness.
(ii) Existence. We split the proof of the existence into several steps.
Step 1: A Galerkin scheme. Let {v1, v2, . . .} be the basis consisting of

eigenfunctions of the Stokes operator A, which is orthonormal in H and or-
thogonal in V . Denote Vm = span{v1, . . . , vm} and consider the projector
Pmu =

∑m
j=1(u, vj)vj . Define also

um(t) =

m∑
j=1

γm,j(t)vj ,

where the coefficients γm,j are required to satisfy the following system

(2.2)

d

dt
(um(t), vj)+ν((um(t), vj))+α2((∂tu

m(t), vj))+b(um(t), um(t), vj)

= 〈f, vj〉+ (F (umt ), vj), ∀j = 1, . . . ,m,

and the initial condition um(s) = Pmφ(s) for s ∈ (−∞, 0].
The above system of ordinary differential equations with infinite delay in

the unknowns (γm,1(t), . . . , γm,m(t)) fulfills the conditions for existence and
uniqueness of local solutions in [15, Theorem 1.1, p. 36], so the approximate
solutions um exist.
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Step 2: A priori estimates. Multiplying (2.2) by γm,j(t) and summing in j,
we obtain

d

dt
|um(t)|2 + α2 d

dt
‖um(t)‖2 + 2ν‖um(t)‖2 = 2〈f, um(t)〉+ 2(F (umt ), um(t)).

Using the Cauchy inequality, we get

d

dt

(
|um(t)|2 + α2‖um(t)‖2

)
+ 2ν‖um(t)‖2

≤ ν

2
‖um(t)‖2 +

2‖f‖2∗
ν

+
2LF

λ
1/2
1

‖umt ‖γ‖um(t)‖,

and hence

d

dt

(
|um(t)|2 + α2‖um(t)‖2

)
+ ν‖um(t)‖2 ≤ 2‖f‖2∗

ν
+

2L2
F

νλ1
‖umt ‖2γ .

Integrating from 0 to t, we obtain

|um(t)|2 + α2‖um(t)‖2 + ν

∫ t

0

‖um(s)‖2ds

≤ |u(0)|2 + α2‖u(0)‖2 +

∫ t

0

(2‖f‖2∗
ν

+
2L2

F

νλ1
‖ums ‖2γ

)
ds,

and therefore

α2‖um(t)‖2 + ν

∫ t

0

‖um(s)‖2ds

≤
( 1

λ1
+ α2

)
‖u(0)‖2 +

∫ t

0

(2‖f‖2∗
ν

+
2L2

F

νλ1
‖ums ‖2γ

)
ds.

Furthermore,

‖umt ‖2γ ≤ max
{

sup
θ∈(−∞,−t]

e2γθ‖φ(θ + t)‖2;

1

α2
sup

θ∈[−t,0]

[
e2γθ

( 1

λ1
+ α2

)
‖u(0)‖2 + e2γθ

∫ t+θ

0

(2‖f‖2∗
ν

+
2L2

F

νλ1
‖ums ‖2γ

)]}
≤ max

{
sup

θ∈(−∞,−t]
e2γθ‖φ(θ + t)‖2;

( 1

λ1
+ α2

)
‖u(0)‖2

+

∫ t

0

(2‖f‖2∗
ν

+
2L2

F

νλ1
‖ums ‖2γ

)
ds
}
, ∀t ≥ 0.

Since

sup
θ∈(−∞,−t]

eγθ‖φ(θ + t)‖ = sup
θ≤0

eγ(θ−t)‖φ(θ)‖ = e−γt‖φ‖γ ≤ ‖φ‖γ ,

and ‖u(0)‖ = ‖φ(0)‖ ≤ ‖φ‖γ , we deduce that

‖umt ‖2γ ≤
( 1

λ1
+ α2 + 1

)
‖φ‖2γ +

2‖f‖2∗
ν

T +
2L2

F

νλ1

∫ t

0

‖ums ‖2γds.
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By the Gronwall inequality we have

‖umt ‖2γ ≤ e
2L2
F

νλ1
t
[( 1

λ1
+ α2 + 1

)
‖φ‖2γ +

2‖f‖2∗
ν

T
]
.

Then we obtain the following estimates: for any R > 0 such that ‖φ‖γ ≤ R,
there exists a constant C1 depending on λ1, ν, α, LF , f, R, T , such that

(2.3) ‖umt ‖2γ ≤ C1, ∀t ∈ [0, T ], ∀m ≥ 1.

In particular,

(2.4) {um} is bounded in L∞(0, T ;V ).

Hence, it is easy to check that {Aum} and {Bum} are bounded in L2(0, T ;V ′).
Now, we prove the boundedness of {dum/dt}. Multiplying (2.2) by γ′m,j(s),
then adding the resulting equations for j and integrating from 0 to t, we obtain∫ t

0

∣∣∂um
∂s

∣∣2ds+ ν

∫ t

0

∫
Ω

∇um ∂∇u
m

∂s
dxds+ α2

∫ t

0

∫
Ω

|∇(∂su
m)|2dxds

+

∫ t

0

b(um, um, ∂su
m)ds=

∫ t

0

〈f, ∂sum〉ds+

∫ t

0

(F (ums ), ∂su
m)ds.

Using the Cauchy and Ladyzhenskaya inequalities, we have∫ t

0

∣∣∂um
∂s

∣∣2ds+
ν

2

∫ t

0

∂

∂s
|∇um|2ds+ α2

∫ t

0

|∇(∂su
m)|2ds

=

∫ t

0

b(um, ∂su
m, um)ds+

∫ t

0

〈f, ∂sum〉ds+

∫ t

0

(F (ums ), ∂su
m(s))ds

≤ 1

α2
‖f‖2∗t+

α2

4
‖∂sum‖2L2(0,t;V ) + c

∫ t

0

|um|1/2|∇um|3/2|∇(∂su
m)|ds

+
(∫ t

0

1

λ1
L2
F ‖ums ‖2γds

)1/2

· ‖∂sum‖L2(0,t;V )

≤ 1

α2
‖f‖2∗t+

α2

4
‖∂sum‖2L2(0,t;V ) + c

∫ t

0

|∇um|2|∇(∂su
m)|ds

+
(∫ t

0

1

λ1
L2
F ‖ums ‖2γds

)1/2

· ‖∂sum‖L2(0,t;V )

≤ 1

α2
‖f‖2∗t+

α2

4
‖∂sum‖2L2(0,t;V ) + c‖um‖4L4(0,t;V )

+
α2

4
‖∂sum‖2L2(0,t;V ) +

1

λ1α2

∫ t

0

L2
F ‖ums ‖2γds+

α2

4
‖∂sum‖2L2(0,t;V ).

Hence

4

∫ t

0

∣∣∂um
∂s

∣∣2ds+ α2

∫ t

0

|∇(∂su
m)|2ds+ 2ν|∇um(t)|2

≤ 4

α2
‖f‖2∗T + c‖um‖4L4(0,t;V ) +

4

λ1α2

∫ t

0

L2
F ‖ums ‖2γds+ 2ν|∇u(0)|2
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for all 0 ≤ t ≤ T . Therefore, from (2.3) we deduce that

(2.5)

{
dum

dt

}
is bounded in L2(0, T ;V ).

So, it follows from above estimates that there exist u ∈ L∞(0, T ;V ) with
du
dt ∈ L

2(0, T ;V ) and a subsequence of {um}, relabeled the same, such that

• {um} converges weakly-star to u in L∞(0, T ;V ),

• {du
m

dt } converges weakly to du
dt in L2(0, T ;V ).

Repeating the arguments as in the proof of Theorem 3.2 in [2], we get

(2.6)

∫ T

0

∫
Ω

(um · ∇)umvjψdxdt→
∫ T

0

∫
Ω

(u · ∇)uvjψdxdt

for any function vj in the basis and any continuously differentiable function ψ
on [0, T ].

However, the estimates obtained above are not enough to pass to the limit in
the delay term F (umt ) because in general the nonlinear term is not continuous
with respect to the weak convergence. To overcome this point, we need some
kind of strong convergence.

Step 3: Convergence in Cγ(V ) and existence of a weak solution.
We will prove that

umt → ut in Cγ(V ), ∀t ∈ (−∞, T ],

by showing that

(2.7) Pmφ→ φ in Cγ(V ),

(2.8) um → u in C([0, T ];V ).

Step 3.1. Approximation in Cγ(V ) of the initial datum.
Assume contrary that (2.7) is not true. Then there exist ε > 0 and a subse-
quence, relabeled the same, such that

(2.9) eγθm‖Pmφ(θm)− φ(θm)‖ > ε.

One can assume that θm → −∞, otherwise if θm → θ, then Pmφ(θm)→ φ(θ),
since ‖Pmφ(θm) − φ(θ‖ ≤ ‖Pmφ(θm) − Pmφ(θ)‖ + ‖Pmφ(θ) − φ(θ)‖ → 0 as
m→ +∞. But with θm → −∞ as m→ +∞, if we denote x = lim

θ→−∞
eγθφ(θ),

we obtain

eγθm‖Pmφ(θm)− φ(θm)‖ = ‖Pm(eγθmφ(θm))− eγθmφ(θm)‖

≤ ‖Pm(eγθmφ(θm))− Pmx‖+ ‖Pmx− x‖+ ‖x− eγθmφ(θm)‖ → 0.

This contradicts (2.9), so (2.7) holds.
Step 3.2. Convergence of um to u in C([0, T ];V ).

From the strong convergence of {um} to u in L2(0, T ;V ), we deduce that

um(t)→ u(t) in V for a.e. t ∈ (0, T ).



388 C. T. ANH AND D. T. P. THANH

Since

um(t)− um(s) =

∫ t

s

(um)
′
(r)dr in V ′, ∀s, t ∈ [0, T ],

from (2.5) we have that {um} is equicontinuous on [0, T ] with values in V ′. By
the compactness of the embedding V ↪→ V ′, from (2.4) and the equicontinuity
in V ′, using the Arzela-Ascoli theorem we have

(2.10) um → u in C([0, T ];V ′).

Again from (2.4) we obtain that for any sequence {tm} ⊂ [0, T ] with tm → t,

(2.11) um(tm) ⇀ u(t) in V,

where we have used (2.10) in order to identify which is the weak limit.
Now, we are ready to prove (2.8) by a contrary argument. If it would not be

so, then taking into account that u ∈ C([0, T ];V ), there would exist ε > 0, a
value t0 ∈ [0, T ] and subsequences (relabeled the same) {um} and {tm} ⊂ [0, T ]
with lim

m→+∞
tm = t0 such that

(2.12) ‖um(tm)− u(t0)‖ ≥ ε, ∀m.
To prove that this is absurd, we will use an energy method. Observe that the
following energy inequality holds for all um:
(2.13)

1

2
|um(t)|2 +

α2

2
‖um(t)‖2 + ν

∫ t

s

‖um(r)‖2dr

≤
∫ t

s

〈f, um(r)〉dr +
1

2
|um(s)|2 +

α2

2
‖um(s)‖2 + C3(t− s), ∀ s, t ∈ [0, T ],

where C3 = D
2νλ1

and D corresponds to the upper bound∫ t

s

|F (umr )|2dr ≤ D(t− s) ∀0 ≤ s < t ≤ T.

On the other hand, from (2.4) and (H2), there exists ξF ∈ L2(0, T ;L2(Ω)3)
such that {F (um)} converges weakly to ξF in L2(0, T ;L2(Ω)3). Thus, we can
pass to the limit to deduce that u satisfies

d

dt
(u(t), v) + ν((u(t), v)) + α2((∂tu(t), v)) + b(u(t), u(t), v) = 〈f, v〉+ (ξF (t), v)

for all v ∈ V . Therefore, u satisfies the energy equality

|u(t)|2 + α2‖u(t)‖2 + 2ν

∫ t

s

‖u(r)‖2dr

= |u(s)|2 + α2‖u(s)‖2 + 2

∫ t

s

(
〈f, u(r)〉+ (ξF (r), u(r))

)
dr, ∀s, t ∈ [0, T ],

and for the weak limit ξF we have the estimate∫ t

s

|ξF |2dr ≤ lim inf
m→+∞

∫ t

s

|F (umr )|2dr ≤ D(t− s), ∀0 ≤ s ≤ t ≤ T.
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So, we have that u also satisfies inequality (2.13) with the same constant C3.
Now, consider two functions Jm, J : [0, T ]→ R defined by

Jm(t) =
1

2
(|um(t)|2 + α2‖um(t)‖2)−

∫ t

0

〈f, um(r)〉dr − C3t,

J(t) =
1

2
(|u(t)|2 + α2‖u(t)‖2)−

∫ t

0

〈f, u(r)〉dr − C3t.

It is clear that Jm and J are non-increasing and continuous functions. More-
over, by the convergence of um to u a.e. in time with value in V , and weakly
in L2(0, T ;V ), it holds that

(2.14) Jm(t)→ J(t) a.e. t ∈ [0, T ].

Now we will prove that

(2.15) um(tm)→ u(t0) in V,

which contradicts (2.12). First, recall from (2.11) that

(2.16) um(tm) ⇀ u(t0) weakly in V,

so we have
‖u(t0)‖ ≤ lim inf

m→+∞
‖um(tm)‖.

Therefore, if we show that

(2.17) lim sup
m→+∞

‖um(tm)‖ ≤ ‖u(t0)‖,

we will obtain lim
m→+∞

‖um(tm)‖ = ‖u(t0)‖, which jointly with (2.16) imply

(2.15).
Now, observe that the case t0 = 0 follows directly from (2.13) with s = 0

and the definition of um(0) = Pmφ(0). So, we may assume that t0 > 0. This
is important, since we will approach this value t0 from the left by a sequence
{t′k}, i.e., limk→+∞ t′k ↗ t0. Since u(·) is continuous at t0, there is kε such that

|J(t′k)− J(t0)| < ε

2
, ∀ k ≥ kε.

On the other hand, taking m ≥ m(kε) such that tm > t′kε , as Jm is non-
increasing and for all t′k the convergence (2.15) holds, one has

Jm(tm)− J(t0) ≤ |Jm(t′kε)− J(t′kε)|+ |J(t′kε)− J(t0)|,
and obviously, taking m ≤ m′(kε), it is possible to obtain |Jm(t′kε)−J(t′kε)| <

ε
2 .

It can also be deduced from Step 2 that∫ tm

0

〈f, um(r)〉dr →
∫ t0

0

〈f, u(r)〉dr,

so we conclude that (2.17) holds. Thus, (2.15) and finally (2.8) are also true,
as we wanted to check. Hence, we have

(2.18) F (umt )→ F (ut) in L2(0, T ; (L2(Ω))3).
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Finally, we will show that the convergence results above enable us to con-
clude that u is a weak solution of problem (1.1). Let ψ ∈ D(0, T ) be any
smooth real-valued function with compact support. Multiplying (2.2) by ψ(t),
we have ∫ T

0

(
dum(t)

dt
, ψ(t)vj)dt+ ν

∫ T

0

((um(t), vjψ(t)))dt

+ α2

∫ T

0

((∂tu
m(t), vjψ(t)))dt+

∫ T

0

b(um(t), um(t), vjψ(t))dt

=

∫ T

0

〈f, vjψ(t)〉dt+

∫ T

0

(F (umt ), vjψ(t))dt.

Taking a diagonal subsequence, denoted again by um, that satisfies (2.6) and
(2.18), and passing to the limit, we have∫ T

0

(
du(t)

dt
, vjψ(t))dt+ ν

∫ T

0

((u(t), vjψ(t)))dt

+ α2

∫ T

0

((∂tu(t), vjψ(t)))dt+

∫ T

0

b(u(t), u(t), vjψ(t))dt

=

∫ T

0

〈f, vjψ(t)〉dt+

∫ T

0

(F (ut), vjψ(t))dt

holds for all vj in the basis (and therefore for every v ∈ V by density) and any
function ψ ∈ D(0, T ), i.e., u satisfies (2.1) in the distribution sense. �

3. Existence of a global attractor

Thanks to Theorem 2.1, we can define a semigroup S(t) : Cγ(V ) → Cγ(V )
by the formula

S(t)φ := ut,

where u(t) is the unique weak solution of (1.1) with the initial datum φ ∈
Cγ(V ).

The aim of this section is to prove the existence of a compact global attractor
in the space Cγ(V ) for the semigroup S(t). First, we prove the continuity of
the semigroup S(t).

Proposition 3.1. Under the conditions (H1)-(H2), the semigroup S(t) is
continuous on Cγ(V ).

Proof. Denoting ui, for i = 1, 2, the corresponding solutions to initial data
φi ∈ Cγ(V ). Consider the equations satisfied by ui for i = 1 and 2, acting on
the element u1 − u2, and take the difference. This gives

1

2

d

dt

(
|u1(t)− u2(t)|2 + α2‖u1(t)− u2(t)‖2

)
+ ν‖u1(t)− u2(t)‖2

+ b(u1(t), u1(t), u1(t)− u2(t))− b(u2(t), u2(t), u1(t)− u2(t))
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= (F (u1
t )− F (u2

t ), u
1 − u2).

Arguing as in the proof of Theorem 2.1 and using the Ladyzhenskaya inequality,
we have

|b(u1(t), u1(t), u1(t)− u2(t))− b(u2(t), u2(t), u1(t)− u2(t))|
= |b(u1(t)− u2(t), u1(t), u1(t)− u2(t))|
≤ c‖u1(t)‖‖u1(t)− u2(t)‖2.

Thus, by the Lipschitz assumption on F , and the fact that, for s ∈ [0, t], one
has
(3.1)
‖u1

s − u2
s‖γ

= sup
θ≤0

eγθ‖u1(s+ θ)− u2(s+ θ)‖

= max
{

sup
θ∈(−∞,−s]

eγθ‖φ1(s+ θ)− φ2(s+ θ)‖; sup
θ∈[−s,0]

eγθ‖u1(s+ θ)− u2(s+ θ)‖
}

≤ max
{
e−γs‖φ1 − φ2‖γ ; max

θ∈[0,s]
‖u1(θ)− u2(θ)‖

}
,

we conclude that, for all t ∈ [0, T ],

|u1(t)− u2(t)|2 + α2‖u1(t)− u2(t)‖2 + 2ν

∫ t

0

‖u1(s)− u2(s)‖2ds

= 2

∫ t

0

b(u1(s)− u2(s), u1(s), u1(s)− u2(s))ds

+ |u1(0)− u2(0)|2 + α2‖u1(0)− u2(0)‖2

+ 2

∫ t

0

(F (u1
s)− F (u2

s), u
1(s)− u2(s))ds.

Hence

|u1(t)− u2(t)|2 + α2‖u1(t)− u2(t)‖2

≤ |φ1(0)− φ2(0)|2 + α2‖φ1(0)− φ2(0)‖2 +
C

ν

∫ t

0

‖u1(s)‖2‖u1(s)− u2(s)‖2ds

+ 2LF ‖φ1 − φ2‖γ
∫ t

0

e−γs|u1(s)− u2(s)|ds

+ 2LF

∫ t

0

|u1(s)− u2(s)| max
θ∈[0,s]

‖u1(θ)− u2(θ)‖ds

≤
( 1

λ1
+ α2

)
‖φ1(0)− φ2(0)‖2 + LF ‖φ1 − φ2‖2γ

C

ν

∫ t

0

‖u1(s)‖2 max
r∈[0,s]

‖u1(r)− u2(r)‖2ds+
LF
λ1

∫ t

0

max
r∈[0,s]

‖u1(r)− u2(r)‖2ds
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+
2LF

λ
1/2
1

∫ t

0

max
r∈[0,s]

‖u1(r)− u2(r)‖2ds.

If we now substitute t by r ∈ [0, t] and consider the maximum when varying
this r, from above we can conclude that

max
r∈[0,t]

‖u1(r)− u2(r)‖2

≤
(
1 +

1

λ1α2

)
‖φ1(0)− φ2(0)‖2 +

LF
α2
‖φ1 − φ2‖2γ

+

∫ t

0

( LF
λ1α2

+
2LF

λ
1/2
1 α2

+
C

να2
‖u1(s)‖2

)
max
r∈[0,s]

‖u1(r)− u2(r)‖2ds.

By the Gronwall inequality, we obtain

max
r∈[0,t]

‖u1(r)− u2(r)‖2

≤
((

1 +
1

λ1α2

)
‖φ1(0)− φ2(0)‖2 +

LF
α2
‖φ1 − φ2‖2γ

)
e

∫ t
0

(
LF
λ1α

2 +
2LF

λ
1/2
1 α2

+ C
να2 ‖u

1(s)‖2)ds

.

Combining with (3.1), we get

‖u1
t − u2

t‖2γ ≤
(

1 +
1

λ1α2
+
LF
α2

)
‖φ1 − φ2‖2γe

∫ t
0

(
LF
λ1α

2 +
2LF

λ
1/2
1 α2

+ C
να2 ‖u

1(s)‖2)ds

.

This completes the proof. �

Next, we prove the existence of a bounded absorbing set for the semigroup
S(t).

Lemma 3.1. Let conditions (H1)-(H2) hold, and let

2L2
F

νλ1α2
<

νλ1

1 + λ1α2
< 2γ.

Then the semigroup S(t) has a bounded absorbing set B in Cγ(V ).

Proof. We have

d

dt

(
|u(t)|2 + α2‖u(t)‖2

)
+ 2ν‖u(t)‖2 = 2〈f, u(t)〉+ 2(F (ut), u(t)).

Using the Cauchy inequality and the Poincaré inequality, we get

d

dt

(
|u(t)|2 + α2‖u(t)‖2

)
+ 2ν‖u(t)‖2 ≤ ν

2
‖u(t)‖2 +

2‖f‖2∗
ν

+
2LF

λ
1/2
1

‖ut‖γ‖u(t)‖,

and hence by the Cauchy inequality once again,

d

dt

(
|u(t)|2 + α2‖u(t)‖2

)
+ ν‖u(t)‖2 ≤ 2‖f‖2∗

ν
+

2L2
F

νλ1
‖ut‖2γ .

Noting that
1

α2
‖u‖2 ≤ |u|2 + α2‖u‖2 ≤ 1 + λ1α

2

λ1
‖u‖2,



NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY 393

we have

d

dt

(
|u(t)|2 + α2‖u(t)‖2

)
+

νλ1

1 + λ1α2

(
|u(t)|2 + α2‖u(t)‖2

)
≤ 2‖f‖2∗

ν
+

2L2
F

νλ1
‖ut‖2γ .

Using the Gronwall inequality we obtain

(3.2)
|u(t)|2 + α2‖u(t)‖2 ≤ e−

νλ1
1+λ1α

2 t(|u(0)|2 + α2‖u(0)‖2)

+

∫ t

0

e−
νλ1
1+λ1

(t−s)
(2‖f‖2∗

ν
+

2L2
F

νλ1
‖us‖2γ

)
ds,

so

‖u(t)‖2 ≤1 + λ1α
2

λ1α2
e
− νλ1

1+λ1α
2 t‖u(0)‖2

+

∫ t

0

e
− νλ1

1+λ1α
2 (t−s)

(2‖f‖2∗
να2

+
2L2

F

νλ1α2
‖us‖2γ

)
ds.

We have

‖ut‖2γ ≤ max
{

sup
θ∈(−∞,−t]

e2γθ‖φ(θ + t)‖2;

sup
θ∈[−t,0]

[1 + λ1α
2

λ1α2
e

2γθ− νλ1
1+λ1α

2 (t+θ)‖u(0)‖2

+ e2γθ

∫ t+θ

0

e
− νλ1

1+λ1α
2 (t+θ−s)

(
2‖f‖2∗
να2

+
2L2

F

νλ1α2
‖us‖2γ

)
ds
]}
.

By the assumption 2γ > νλ1

1+λ1α2 , we get

sup
θ∈[−t,0]

e2γθ

∫ t+θ

0

e
− νλ1

1+λ1α
2 (t+θ−s)(2‖f‖2∗

να2
+

2L2
F

νλ1α2
‖us‖2γ

)
ds

≤ sup
θ∈[−t,0]

∫ t+θ

0

e
− νλ1

1+λ1α
2 (t−s)(2‖f‖2∗

να2
+

2L2
F

νλ1α2
‖us‖2γ

)
ds.

Since

sup
θ∈(−∞,−t]

eγθ‖φ(θ + t)‖ = sup
θ≤0

eγ(θ−t)‖φ(θ)‖ = e−γt‖φ‖γ ,

and ‖u(0)‖ = ‖φ(0)‖ ≤ ‖φ‖γ , we deduce that

‖ut‖2γ ≤
1 + λ1α

2

λ1α2
e
− νλ1

1+λ1α
2 t‖φ‖2γ +

∫ t

0

e
− νλ1

1+λ1α
2 (t−s)(2‖f‖2∗

να2
+

2L2
F

νλ1α2
‖us‖2γ

)
ds.



394 C. T. ANH AND D. T. P. THANH

By the Gronwall inequality, we have
(3.3)

‖ut‖2γ ≤
1 + λ1α

2

λ1α2
e
−(

νλ1
1+λ1α

2−
2L2
F

νλ1α
2 )t‖φ‖2γ +

2‖f‖2∗
να2

∫ t

0

e
−(

νλ1
1+λ1α

2−
2L2
F

νλ1α
2 )(t−s)

ds

≤1 + λ1α
2

λ1α2
e
−(

νλ1
1+λ1α

2−
2L2
F

νλ1α
2 )t‖φ‖2γ +

2‖f‖2∗
να2( νλ1

1+λ1α2 −
2L2

F

νλ1α2 )
.

By the condition
2L2

F

νλ1α2 <
νλ1

1+λ1α2 , it implies that the ball

B =

v ∈ Cγ(V ) : ‖v‖γ ≤

√√√√ 4‖f‖2∗
να2

(
νλ1

1+λ1α2 −
2L2

F

νλ1α2

)


is a bounded absorbing set in Cγ(V ) for the semigroup S(t).
By combining (3.2) and (3.3) we can see that

(3.4) |u(t)|2 + α2‖u(t)‖2 ≤ C = C(ν, λ, α1, ‖u0‖, ‖φ‖γ , ‖f‖∗), ∀t ≥ 0. �

To show the existence of a global attractor for the semigroup S(t), it remains
to prove the asymptotic compactness of S(t).

Lemma 3.2. Under the assumptions of Lemma 3.1, the semigroup S(t) is
asymptotically compact.

Proof. Let B be a bounded set in Cγ(V ) and un(·) be a sequence of solutions
in [0,+∞) with initial data φn ∈ B. Consider the sequence ξn = untn , where
tn → +∞ as n → +∞. We have to prove that this sequence is relatively
compact in Cγ(V ). To do this, we will use energy method as in Step 3 in the
proof of Theorem 2.1.

Step 1: Consider two arbitrary values 0 < T < T . We will prove that
ξn|[−T ,0] is relatively compact in C([−T , 0];V ). It follows from (3.3) that there

exists n0 such that tn ≥ T for all n ≥ n0 and

(3.5) ‖ξn‖γ ≤ R,

where

R =

√√√√ 4‖f‖2∗
να2

(
νλ1

1+λ1α2 −
2L2

F

νλ1α2

) ,
so

(3.6)
‖un(t)‖ ≤ R, ∀t ∈ [0, T ], ∀n ≥ n0,

‖untn−T ‖γ ≤ R, ∀n ≥ n0.

Let yn(·) = untn−T (·) = un(·+tn−T ). Then for each n ≥ 1 such that tn ≥ T ,
the function yn is a solution on [0, T ] of a similar problem to (1.1), namely

(3.7)
d

dt
yn(t) + νAyn(t) + α2A(∂ty

n(t)) +B(yn(t), yn(t)) = F (ynt ) + f
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with yn0 = untn−T , y
n
T = ξn. Then yn0 satisfies the estimate (3.5) for all n ≥ n0.

Applying the estimate (3.4), one can see that {yn} is bounded in L∞(0, T ;V ),
and therefore {Ayn}, {Byn} are bounded in L2(0, T ;V ′). So, {dyn/dt} is
bounded in L2(0, T ;V ). Thus, as in the proof of Theorem 2.1, up to a subse-
quence (relabeled the same), for some function y(·) we have

• yn converges weakly-star to y in L∞(0, T ;V ),

• dyn

dt
converges weakly to

dy

dt
in L2(0, T ;V ),

• yn converges to y in L2(0, T ;H),
• yn(t) converges to y(t) in V for a.e. t ∈ (0, T ).

Moreover, reasoning as in the proof of Theorem 2.1, we obtain that yn(tn)
converges weakly to y(t0) in V if tn → t0 ∈ [0, T ]. Also, by (H2) and (3.5), we
obtain ∫ t

0

|F (yns )|2ds ≤ Ct, ∀0 ≤ t ≤ T,

where C > 0 does not depend either on n or t. Since

F (ynt ) ⇀ ξ

in L2(0, T ; (L2(Ω))3), we get∫ t

s

|ξ(r)|2dr ≤ lim inf
n→+∞

∫ t

s

|F (ynr )|2dr ≤ C(t− s), ∀0 ≤ s ≤ t ≤ T.

Then we can prove that y is a solution of
∂ty − ν∆y − α2∆(∂ty) + (y · ∇)y = −∇p+ f + ξ in (0, T )× Ω,

∇ · y = 0 in (0, T )× Ω,

y(t, x) = 0 on (0, T )× ∂Ω,

y(0, x) = u(0, x) in Ω.

Thus, we obtain the energy inequality

|z(t)|2 + α2‖z(t)‖2 + ν

∫ t

s

‖z(r)‖2dr

≤ |z(s)|2 + α2‖z(s)‖2 + 2

∫ t

s

〈f, z(r)〉dr + 2C3(t− s), ∀0 ≤ s ≤ t ≤ T,

where z = yn or z = y.
Now, consider two functions Jm, J : [0, T ]→ R defined by

Jm(t) =
1

2

(
|ym(t)|2 + α2‖ym(t)‖2

)
−
∫ t

0

〈f, ym(r)〉dr − C3t,

J(t) =
1

2

(
|y(t)|2 + α2‖y(t)‖2

)
−
∫ t

0

〈f, y(r)〉dr − C3t.

It is clear that Jm and J are non-increasing and continuous functions.
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Since yn(t) converges to y a.e. t ∈ (0, T ), we obtain that

Jm(t)→ J(t) a.e. t ∈ [0, T ].

Analogously as we did in Step 3 of the proof in Theorem 2.1, for a fixed t0 > 0,
using a sequence {t̃k} with t̃k ↗ t0, we are able to establish the convergence of
the norms

lim
n→∞

‖yn(tn)‖ = ‖y(t0)‖.

And therefore, jointly with the weak convergence already proved, deduce that
yn → y in C([δ, T ];V ) for any δ > 0.

Now, because T > T and yn → y in C([δ, T ];V ), we obtain that ξn → ψ
in C([−T , 0];V ), where ψ(s) = y(s + T ) for s ∈ [−T , 0]. Repeating the same
procedure for 2T , 3T , etc, for a diagonal subsequence (relabeled the same) we
can obtain a continuous function ψ : (−∞, 0] → V and a subsequence such
that ξn → ψ in C([−T , 0];V ) on every interval [−T , 0].

Moreover, for a fixed T > 0, we also have

|ψ(s)| ≤ R, ∀s ∈ [−T, 0], ∀T > 0.

Step 2 : We claim that ξn converges to ψ in Cγ(V ). Indeed, we have to see
that for every ε > 0 there exists nε such that

(3.8) sup
s∈(−∞,0]

‖ξn(s)− ψ(s)‖2e2γs ≤ ε ∀n ≥ nε.

Fix Tε > 0 such that e−2γTεR2 ≤ ε
4 .

In Step 1, we proved that ξn → ψ in C([−Tε, 0];V ), so there exists nε =
nε(Tε) such that for all n ≥ nε, we have

sup
s∈[−Tε,0]

‖ξn(s)− ψ(s)‖2e2γs ≤ ε, ∀tn ≥ Tε.

(This is possible since the convergence of ξn to ψ holds in compact intervals of
time.) So, in order to prove (3.8) we only have to check that

sup
s∈(−∞,Tε)

‖ξn(s)− ψ(s)‖2e2γs ≤ ε ∀n ≥ nε.

By (3.5) and the choice of Tε, it is not difficult to check that, for all k ∈ N∪{0},
and for all s ∈ [−(Tε + k + 1),−(Tε + k)], it holds that

sup
s∈[−(Tε+k+1),−(Tε+k)]

e2γs‖ψ(s)‖2 ≤ sup
s∈[−1,0]

e2γ(s−Tε−k)‖ψ(s− Tε − k)‖2

≤ e−2γ(Tε+k)R2

≤ ε

4
.

So, it suffices to prove the following

sup
s∈(−∞,−Tε]

e2γs‖ξn(s)‖2 ≤ ε/4, ∀n ≥ nε.
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We remember that ξn has two parts:

ξn(s) =

{
φn(s+ tn) if s ∈ (−∞,−tn],

un(s+ tn) if s ∈ [−tn, 0].

Thus, the proof is finished if we prove that

max{ sup
s∈(−∞,−tn]

e2γs‖φn(s+ tn)‖2, sup
s∈[−tn,−Tε]

e2γs‖un(s+ tn)‖n} ≤ ε/4.

The first term above can be estimated as follows

sup
s≤−tn

e2γs‖φn(s+ tn)‖2 = sup
s≤−tn

e2γ(s+tn)e−2γtn‖φn(s+ tn)‖2

= e−2γTε‖φn‖2γ
≤ ε/4,

thanks to the choice of nε. And finally, for the second term, we have

sup
s∈[−tn,−Tε]

e2γs‖un(s+ tn)‖2 = sup
θ∈[−tn+Tε,0]

e2γ(s−Tε)‖un(tn − Tε + s)‖2

≤ e−2γTε ||untn−Tε ||
2
γ

≤ e−2γTεR2

≤ ε/4,

where we have used (3.6) with T = Tε. �

From Lemma 3.1 and Lemma 3.2, we get the main result of this section.

Theorem 3.2. Under the assumptions of Lemma 3.1, the semigroup S(t) has
a compact global attractor A in the space Cγ(V ).

4. Existence and stability of stationary solutions

A stationary solution to problem (1.1) is an element u∗ ∈ V such that

ν((u∗, v)) + b(u∗, u∗, v) = 〈f, v〉+ (F (u∗), v), ∀v ∈ V.

Theorem 4.1. Let the assumptions (H1)-(H2) hold. If

ν >
LF

λ
1/2
1

,

then
(a) Problem (1.1) admits at least one stationary solution u∗. Moreover, any

such stationary solution satisfies the following estimate

(4.1) ‖u∗‖ ≤ 1

(ν − LF
λ
1/2
1

)
‖f‖∗.
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(b) If the following condition holds

(4.2)
[
ν − LF

λ
1/2
1

]2
>

c0

λ
1/4
1

‖f‖∗,

where c0 is the best constant in the inequality (1.2), then the stationary solution
of (1.1) is unique.

Proof. (i) Existence. The estimate (4.1) can be obtained taking into account
that in particular any stationary solution u∗, if it exists, should verify

ν〈Au∗, u∗〉 = 〈f, u∗〉+ (F (u∗), u∗),

and therefore

ν‖u∗‖2 ≤ ‖f‖∗‖u∗‖+
LF

λ
1/2
1

‖u∗‖2.

Hence we get the desired estimate.
For the existence, let {vj}∞j=1 be the basis of V consisting of eigenfunctions

of the Stokes operator A. For each m ≥ 1, let us denote Vm = span{v1, . . . , vm}
and we would like to define an approximate stationary solution um of (1.1) by

(4.3)
um =

m∑
i=1

γmivi,

ν((um, vi)) + +b(um, um, vi) = 〈f, vi〉+ (F (um), vi), i = 1, . . . ,m.

To prove the existence of um, we define operators Rm : Vm → Vm by

[Rmu, v] := ν〈Au, v〉+ b(u, u, v)− 〈f, v〉 − (F (u), v), ∀u, v ∈ Vm.

For all u ∈ Vm,

[Rmu, u] = ν〈Au, u〉 − 〈f, u〉 − (F (u), u)

≥ ν‖u‖2 − ‖f‖∗‖u‖ −
LF

λ
1/2
1

‖u‖2

=
(
ν − LF

λ
1/2
1

)
‖u‖2 − ‖f‖∗‖u‖.

Thus, if we take

β >
‖f‖∗

ν − LF
λ
1/2
1

,

we obtain [Rmu, u] ≥ 0 for all u ∈ Vm such that ‖u‖ = β. Consequently, by a
corollary of the Brouwer fixed point theorem (see [27, Chapter 2, Lemma 1.4]),
for each m ≥ 1 there exists um ∈ Vm such that Rm(um) = 0, with ‖um‖ ≤ β.

Replacing vi by um in (4.3) and taking into account that b(um, um, um) = 0,
we get

ν‖um‖2 = 〈f, um〉+ (F (um), um)
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≤ ‖f‖∗‖um‖+
LF

λ
1/2
1

‖um‖2.

Hence

(ν − LF

λ
1/2
1

)‖um‖ ≤ ‖f‖∗.

We extract from {um} a subsequence {um′}, which converges weakly in V to
some limit u. Since the domain Ω is bounded, the injection of V into H is
compact. Thus,

um
′
→ u weakly in V, and strongly in H,

up to a subsequence. Passing to the limit in (4.3) with the sequence m′, we
find that u is a stationary solution of (1.1).

(ii) Uniqueness. Suppose that u∗ and v∗ are two stationary solutions of
(1.1). Then

ν〈Au∗ −Av∗, v〉+ b(u∗, u∗, v)− b(v∗, v∗, v) = (F (u∗)− F (v∗), v)

for all v ∈ V . Choosing v = u∗ − v∗, we have

ν〈Au∗ −Av∗, u∗ − v∗〉 = b(u∗ − v∗, v∗, u∗ − v∗) + (F (u∗)− F (v∗), u∗ − v∗).

Hence

ν‖u∗ − v∗‖2 ≤ c0λ−1/4
1 ‖u∗ − v∗‖2‖v∗‖+

LF

λ
1/2
1

‖u∗ − v∗‖2,

where we have used inequality (1.2). Therefore,(
ν − LF

λ
1/2
1

)
‖u∗ − v∗‖2 ≤ c0λ−1/4

1 ‖u∗ − v∗‖2‖v∗‖.

Using estimate (4.1) we deduce that(
ν − LF

λ
1/2
1

)2

‖u∗ − v∗‖2 ≤ c0λ−1/4
1 ‖f‖∗‖u∗ − v∗‖2,

and hence the uniqueness follows from the condition (4.2). �

We now study the stability of the stationary solution.

Theorem 4.2. Let (H1)-(H2) and (4.2) hold. Then there exists a value
λ ∈ (0, 2γ) such that for the solution u(t) of (1.1) with initial datum φ ∈ Cγ(V ),
the following estimates hold for all t ≥ 0:

(4.4)

|u(t)− u∗|2 + α2‖u(t)− u∗‖2 ≤ e−λt
(
|φ(0)− u∗|2 + α2‖φ(0)− u∗‖2

+
LF

(2γ − λ)λ
1/2
1

‖φ− u∗‖2γ
)
,

‖ut − u∗‖2γ ≤ max
{
e−2γt‖φ− u∗‖2γ ; e−λt

( 1

α2
|φ(0)− u∗|2 + ‖φ(0)− u∗‖2
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+
LF

α2(2γ − λ)λ
1/2
1

‖φ− u∗‖2γ
)}
,(4.5)

where u∗ is the unique stationary solution to problem (1.1).

Proof. Denote w(t) = u(t)− u∗, one has

d

dt
(w(t), v) + ν((w(t), v)) + α2((∂tw(t), v)) + b(u(t), u(t), v)− b(u∗, u∗, v)

= (F (ut)− F (u∗), v), ∀t > 0,∀v ∈ V.

From the energy equality, (H2-ii) and introducing an exponential term eλt

with a positive value λ to be fixed later on, we obtain

d

dt

(
eλt(|w(t)|2 + α2‖w(t)‖2)

)
= eλt

[
λ(|w(t)|2 + α2‖w(t)‖2)− 2ν‖w(t)‖2

+ 2b(w(t), u∗, w(t)) + 2(F (ut)− F (u∗), w(t))
]

≤ eλt
[
λ(|w(t)|2 + α2‖w(t)‖2)− 2ν‖w(t)‖2

+
2c0

λ
1/4
1

‖w(t)‖2‖u∗‖+ 2LF ‖wt‖γ |w(t)|
]
.

Hence, using the Cauchy inequality with δ > 0 to be fixed later on and (4.1),
we have

d

dt

(
eλt(|w(t)|2 + α2‖w(t)‖2)

)
≤ eλtLF

δ
‖wt‖2γ + eλt

[
λλ−1

1 + λα2 − 2ν +
δLF
λ1

+
2c0‖f‖∗

λ
1/4
1

(
ν − LF

λ
1/2
1

)]‖w(t)‖2.

Therefore, integrating from 0 to t, we have

(4.6)

eλt(|w(t)|2 + α2‖w(t)‖2)

≤ |w(0)|2 + α2‖w(0)‖2 +
LF
δ

∫ t

0

eλs‖ws‖2γds

+
[
λ(λ−1

1 + α2)− 2ν +
δLF
λ1

+
2c0‖f‖∗

λ
1/4
1

(
ν − LF

λ
1/2
1

)] ∫ t

0

eλs‖w(s)‖2ds.

In order to control the term
∫ t

0
eλs‖ws‖2γds, we proceed as follows∫ t

0

eλs sup
θ≤0

e2γθ‖w(s+ θ)‖2ds

=

∫ t

0

eλs max{ sup
θ≤−s

e2γθ‖w(s+ θ)‖2; sup
θ∈[−s,0]

e2γθ‖w(s+ θ)‖2}ds
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=

∫ t

0

max{e−(2γ−λ)s‖φ− u∗‖2γ ; sup
θ∈[−s,0]

e(2γ−λ)θeλ(s+θ)‖w(s+ θ)‖2}ds.

So, if λ < 2γ, using the above equality in (4.6), we obtain

eλt(|w(t)|2 + α2‖w(t)‖2)

≤ |w(0)|2 + α2‖w(0)‖2 +
LF
δ
‖φ− u∗‖2γ

∫ t

0

e(λ−2γ)sds

+
[
λ(λ−1

1 + α2)− 2ν +
δLF
λ1

+
2c0‖f‖∗

λ
1/4
1

(
ν − LF

λ
1/2
1

) +
LF
δ

] ∫ t

0

max
r∈[0,s]

eλr‖w(r)‖2ds.

Observe that the choice of δ = λ1
1/2 makes that δλ−1

1 LF + LF δ
−1 is minimal

and the consider coefficient of the last integral becomes

(4.7) λ(λ−1
1 + α2)− 2ν +

2LF

λ1
1/2

+
2c0‖f‖∗

λ
1/4
1

(
ν − LF

λ
1/2
1

) .
By condition (4.2), we can choose λ ∈ (0, 2γ) such that (4.7) is negative. Thus,
we can deduce that

eλt(|w(t)|2 + α2‖w(t)‖2) ≤ |w(0)|2 + α2‖w(0)‖2 +
LF

(2γ − λ)λ
1/2
1

‖φ− u∗‖2γ ,

whence (4.4) follows.
To prove (4.5), we proceed as follows

‖wt‖2γ = sup
θ≤0

e2γθ‖w(t+ θ)‖2

= max
{

sup
θ∈(−∞,−t]

e2γθ‖w(t+ θ)‖2; sup
θ∈[−t,0])

e2γθ‖w(t+ θ)‖2
}

= max
{
e−2γt‖φ− u∗‖2γ ; sup

θ∈[−t,0]

e2γθ‖w(t+ θ)‖2
}
,

and the second term can be estimated by using (4.4) and the fact that e(2γ−λ)θ

≤ 1 when θ ≤ 0. �
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