• 제목/요약/키워드: Nano sensor

검색결과 524건 처리시간 0.026초

VCM을 이용한 노광기용 정밀 레티클 스테이지의 저진동 제어시스템 개발 (Design of the Low Hunting Controller for the Reticle Stage for Lithography)

  • 김문수;오민택;김정한
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.51-58
    • /
    • 2008
  • This paper presents a new design of the precision stage for the reticle in lithography process and a low hunting control method for the stage. The stage has three axes for X, Y, ${\theta}_z$ those actuated by three voice coil motors individually. The designed reticle stage system has three gap sensors and voice coil motors, and supported by four air bearings and the forward/inverse kinematics of the stage were solved to get an accurate reference position. When a stage is in regulating control mode, there always exist small fluctuations(stage hunting) in the stage movement. Because the low stage hunting characteristic is very important in recent lithography and nano-level applications, a special regulating controller for ultra low hunting is proposed in this paper. Also this research proposed the 2-step transmission system for preventing the noise infection from environmental devices. The experimental results showed the proposed regulating control system reduced hunting noise as 35nm(rms) when a conventional PID generates 77nm(rms) in the same mechanical system. Besides the reticle stage has 100nm linear accuracy and $1{\mu}rad$ rotation accuracy at the control frequency of 8kHz.

광섬유 센서를 이용한 선체 구조의 Global 하중 추정에 관한 연구 (A Study for the Measurement of Global Loads on Ship Structure Using Fiber Optic Sensors)

  • 김명현;김영제;강성원;오민철
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.144-150
    • /
    • 2008
  • Ships and offshore structures are exposed to wave and engine excitation loadings during navigation and cargo/ballasting operations. These excessive loads may cause damages to hull and may result loss of life the ship. Therefore, it is important to develop a system that allow accurate measurements of global hull loads. The objective of the study is developing a fiber optic monitoring system that is capable of monitoring, recording and warning of the vessel performance. A method for measurement of global loads on a vessel, using strain measurements from a network of fiber optic strain sensors and extensive finite-element analyses(FEA) with idealistic load cases, is presented. The method has been successfully validated on the idealized ship structure model with strain sensors.

Synthesis and Spectroscopic Characterization of Vanadium incorporated V-AlMCM-41 Molecular Sieves

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Lee, Yong-Ill
    • 한국자기공명학회논문지
    • /
    • 제10권2호
    • /
    • pp.141-154
    • /
    • 2006
  • A solid-state reaction of $V_2O_5$ with AlMCM-41 followed by calcinations generated $V^{5+}$ species in the mesoporous materials. Dehydration results in the formation of a vanadyl species, $VO^{2+}$, that can be characterized by electron spin resonance (ESR). The chemical environment of the vanadium centers in V-AlMCM-41 was investigated by XRD, EDX, diffuse reflectance UV-VIS, ESR, $^{29}Si,\;^{27}Al,\;and\;^{51}V$ NMR. It was found that the vanadium species on the wall surface and inside the wall of the hexagonal tubular wall of the V-AlMCM-41 were completely oxidized to tetrahedral $V^{5+}$ and transformed to square pyramidal by additional coordination to water molecules upon hydration. The oxidized $V^{5+}$ species on the wall surfaces and inside the wall were also reversibly reduced to $VO^{2+}$ species or lower valences by thermal process.

  • PDF

양극산화법에 의한 생체적합형 티타늄 표면 개질 (Surface Treatments of Titanium Biomaterials by Anodization)

  • 문규식;김재연;김동현;천세준;김효은;이명훈;최원열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.306-306
    • /
    • 2007
  • The surface was transformed to porous titanium oxide by the anodization of pure titanium. Titanium was anodized in non-aqueous and aqueous electrolytes at different potentials between 5 V and 150 V. Various electrolytes were compose of ethylene glycerol, $H_2SO_4,\;NH_4F\;and\;H_2O$. We obtained titania nanotube arrays on the micro pore of titanium. Micro pores and nano tubes were obtained by anodization at high potentials and low potentials, respectively. Morphologies of nanotubes and micro pore were characterized by FE-SEM. The unique surface structure is very attractive to electrical and medical applications such as gas sensor, biosensor, dental implant and stent.

  • PDF

전기화학적 방법을 통한 폭발물 검출 연구동향 (Recent Research Trends in Explosive Detection through Electrochemical Methods)

  • 이원주;이기영
    • 공업화학
    • /
    • 제30권4호
    • /
    • pp.399-407
    • /
    • 2019
  • 국내외 테러에 대한 공포와 안보 환경에서 폭발물을 검출 기술 개발은 매우 중요한 문제이다. 특히, 최근 항공보안성능 인증제 실시에 따른 폭발물 탐지 기술의 국산화 기술에 있어서 관련 연구가 요구된다. 폭발물 검출 및 탐지 기술은 전통적인 화학분석법을 통하여 이루어지고 있으나 높은 민감도, 빠른 분석, 소형화, 휴대성 등을 위해서는 전기화학적 방법이 적합하다고 여겨진다. 전기화학적 폭발물 탐지 기술의 대부분은 미국, 중국, 이스라엘 등에서 주로 연구가 되고 있지만 국내에서는 아직 관련 연구가 미비한 실정이다. 본 총설에서는 해외에서 수행되고 있는 전기화학적 폭발물 탐지 기술의 원리와 연구 동향을 보고하고 앞으로 우리가 탐구해야 할 연구 방향을 제시하고자 한다.

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants

  • Lee, Jun Ho;Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • 센서학회지
    • /
    • 제28권3호
    • /
    • pp.139-145
    • /
    • 2019
  • Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.

Vibration analysis of defected and pristine triangular single-layer graphene nanosheets

  • Mirakhory, M.;Khatibi, M.M.;Sadeghzadeh, S.
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1327-1337
    • /
    • 2018
  • This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, nonrectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.

접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성 (Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc)

  • 김주영;조규만;이경석
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.464-470
    • /
    • 2008
  • Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

Interfacial Material Engineering for Enhancing Triboelectric Nanogenerators

  • Nguyen, Dinh Cong;Choi, Dukhyun
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.218-227
    • /
    • 2022
  • Triboelectric nanogenerators (TENGs), a new green energy, that have various potential applications, such as energy harvesters and self-powered sensors. The output performance of TENGs has been improving rapidly, and their output power significantly increased since they were first reported owing to improved triboelectrification materials and interfacial material engineering. Because the operation of a TENG is based on contact electrification in which electric charges are exchanged at the interface between two materials, its output can be increased by increasing the contact area and charge density. Material surface modification with microstructures or nanostructures has increased the output performance of TENGs significantly because not only does the sharp micro/nano morphology increases the contact area during friction, but it also increases the charge density. Chemical treatment in which ions or functional groups are added has also been used to improve the performance of TENGS by modifying the work functions, charge densities, and dielectric constants of the triboelectric materials. In addition, ultrahigh output power from TENGs without using new materials or treatments has been obtained in many studies in which special structures were designed to control the current release or to collect the charge current directly. In this review, we discuss physical and chemical treatments, bulk modifications, and interfacial engineering for enhancing TENG performance by improving contact electrification and electrostatic induction.

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.