Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.4.218

Interfacial Material Engineering for Enhancing Triboelectric Nanogenerators  

Nguyen, Dinh Cong (School of Mechanical Engineering, College of Engineering, Sungkyunkwan University)
Choi, Dukhyun (School of Mechanical Engineering, College of Engineering, Sungkyunkwan University)
Publication Information
Journal of Sensor Science and Technology / v.31, no.4, 2022 , pp. 218-227 More about this Journal
Abstract
Triboelectric nanogenerators (TENGs), a new green energy, that have various potential applications, such as energy harvesters and self-powered sensors. The output performance of TENGs has been improving rapidly, and their output power significantly increased since they were first reported owing to improved triboelectrification materials and interfacial material engineering. Because the operation of a TENG is based on contact electrification in which electric charges are exchanged at the interface between two materials, its output can be increased by increasing the contact area and charge density. Material surface modification with microstructures or nanostructures has increased the output performance of TENGs significantly because not only does the sharp micro/nano morphology increases the contact area during friction, but it also increases the charge density. Chemical treatment in which ions or functional groups are added has also been used to improve the performance of TENGS by modifying the work functions, charge densities, and dielectric constants of the triboelectric materials. In addition, ultrahigh output power from TENGs without using new materials or treatments has been obtained in many studies in which special structures were designed to control the current release or to collect the charge current directly. In this review, we discuss physical and chemical treatments, bulk modifications, and interfacial engineering for enhancing TENG performance by improving contact electrification and electrostatic induction.
Keywords
Triboelectrification; physical treatments; chemical treatments; embedded impurities; interfacial layers;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 J. W. Lee, S. Jung, J. Jo, G. H. Han, D. M. Lee, J. Oh, H. J. Hwang, D. Choi, S. W. Kim, and J. H. Lee, "Sustainable highly charged C 60-functionalized polyimide in a non-contact mode triboelectric nanogenerator", Energy Environ. Sci., Vol. 14, No. 2, pp. 1004-1015, 2021.   DOI
2 W. Kim, T. Okada, H. W. Park, J. Kim, S. Kim, S. W. Kim, S. Samukawa, and D. Choi, "Surface modification of triboelectric materials by neutral beams", J. Mater. Chem. A, Vol. 7, No. 43, pp. 25066-25077, 2019.   DOI
3 X. Xia, J. Chen, G. Liu, M.S. Javed, X. Wang, and C. Hu, "Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator", Carbon, Vol. 111, pp. 569-576, 2017.   DOI
4 S. Kuntharin, V. Harnchana, A. Klamchuen, K. Sinthiptharakoon, P. Thongbai, V. Amornkitbamrung, P. Chindaprasirt, "Boosting the Power Output of a CementBased Triboelectric Nanogenerator by Enhancing Dielectric Polarization with Highly Dispersed Carbon Black Nanoparticles toward Large-Scale Energy Harvesting from Human Footsteps", ACS Sustain. Chem. Eng., Vol. 10, No. 14, pp. 4588-4598, 2022.   DOI
5 Y. Lee, S. H. Cha, Y. W. Kim, D. Choi, and J. Y. Sun, "Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators", Nat. Commun., Vol. 9. No. 1, pp. 1-8, 2018.   DOI
6 A. Riaud, C. Wang, J. Zhou, W. Xu, Z. Wang, "Hydrodynamic constraints on the energy efficiency of droplet electricity generators", Microsyst. Nanoeng, Vol. 7, No. 1, pp. 1-10, 2021.   DOI
7 H. W. Park, N. D. Huynh, W. Kim, C. Lee, Y. Nam, S. Lee, K. B. Chung, and D. Choi, "Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators", Nano Energy, Vol. 50, pp. 9-15, 2018.   DOI
8 W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, and R. X. Xu, "A droplet-based electricity generator with high instantaneous power density", Nature, Vol. 578, No. 7795, pp. 392-396, 2020.   DOI
9 X. Wang, S. Fang, J. Tan, T. Hu, W. Chu, J. Yin, J. Zhou, and W. Guo, "Dynamics for droplet-based electricity generators", Nano Energy, Vol. 80, p. 105558, 2021.   DOI
10 N. Zhang, H. Gu, K. Lu, S. Ye, W. Xu, H. Zheng, Y. Song, C. Liu, J. Jiao, and Z. Wang, "A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting", Nano Energy, Vol. 82, p. 105735, 2021.   DOI
11 G. Zhu, B. Peng, J. Chen, Q. Jing, and Z. L. Wang, "Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications", Nano Energy, Vol. 14, pp. 126-138, 2015.   DOI
12 Q. Zhang, Y. Li, H. Cai, M. Yao, H. Zhang, L. Guo, Z. Lv, M. Li, X. Lu, and C. Ren, "A Single-Droplet Electricity Generator Achieves an Ultrahigh Output Over 100 V Without Pre-Charging", Adv. Mater., Vol. 33, No. 51, p. 2105761, 2021.   DOI
13 L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, and W. Yang, "Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops", Adv. Mater., Vol. 28, No. 8, pp. 1650-1656, 2016.   DOI
14 J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi, Q. Jing, H. Guo, Z. Wen, K.C. Pradel, S. Niu, "Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy", ACS Nano, 9, pp. 3324-3331, 2015.   DOI
15 Y. Jung and H. Cho, "Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity", J. Sens. Technol., Vol. 31, No. 3, pp. 145-150, 2022.   DOI
16 G. Q. Gu, C. B. Han, C. X. Lu, C. He, T. Jiang, Z. L. Gao, C. J. Li, and Z. L. Wang, "Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal", ACS Nano, Vol. 11, No. 6, pp. 6211-6217, 2017.   DOI
17 B. Dudem, N. D. Huynh, W. Kim, D. H. Kim, H. J. Hwang, D. Choi, and J. S. Yu, "Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting", Nano Energy, Vol. 42, pp. 269-281, 2017.   DOI
18 Z. Wu, W. Ding, Y. Dai, K. Dong, C. Wu, L. Zhang, Z. Lin, J. Cheng, and Z. L. Wang, "Self-powered multifunctional motion sensor enabled by magnetic-regulated triboelectric nanogenerator", ACS Nano, Vol. 12, No. 6, pp. 5726-5733, 2018.   DOI
19 H. G. Menge, N. D. Huynh, H. J. Hwang, S. Han, D. Choi, and Y. T. Park, "Designable skin-like triboelectric nanogenerators using layer-by-layer self-assembled polymeric nanocomposites", ACS Energy Lett., Vol. 6, No. 7, pp. 2451-2459, 2021.   DOI
20 H. Wu, S. Wang, Z. Wang, and Y. Zi, "Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG)", Nat. Commun., Vol. 12, No. 1, pp. 1-8, 2021.   DOI
21 F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, "Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films", Nano Lett., Vol. 12, No. 6, pp. 3109-3114, 2012.   DOI
22 H. J. Kim, J. H. Kim, K. W. Jun, J. H. Kim, W. C. Seung, O. H. Kwon, J. Y. Park, S. W. Kim, and I. K. Oh, "Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG", Adv. Energy Mater, Vol. 6, No. 8, p. 1502329, 2016.   DOI
23 T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang, and M. Zhu, "Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide", Sci. Rep., Vol. 5, No. 1, pp. 1-8, 2015.
24 S. Gao, R. Wang, C. Ma, Z. Chen, Y. Wang, M. Wu, Z. Tang, N. Bao, D. Ding, and W. Wu, "Wearable high-dielectric-constant polymers with core-shell liquid metal inclusions for biomechanical energy harvesting and a selfpowered user interface", J. Mater. Chem. A, Vol. 7, No. 12, pp. 7109-7117, 2019.   DOI
25 J. Chun, J. W. Kim, W. S. Jung, C. Y. Kang, S. W. Kim, Z. L. Wang, and J. M. Baik, "Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments", Energy Environ. Sci., Vol. 8, No. 10, pp. 3006- 3012, 2015.   DOI
26 G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, and Z. L. Wang, "Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator", Nano Lett., Vol. 13, No. 2, pp. 847-853, 2013.   DOI
27 N. Rubab, and S. W. Kim, "Triboelectric Nanogenerators for Self-powered Sensors", J. Sens. Technol., Vol. 31, No. 2, pp. 79-84, 2022.   DOI
28 F. Yi, L. Lin, S. Niu, P. K. Yang, Z. Wang, J. Chen, Y. Zhou, Y. Zi, J. Wang, and Q. Liao, "Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors", Adv. Funct. Mater., Vol. 25, No. 24, pp. 3688-3696, 2015.   DOI
29 J. Huang, X. Fu, G. Liu, S. Xu, X. Li, C. Zhang, and L. Jiang, "Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing", Nano Energy, Vol. 62, pp. 638-644, 2019.   DOI
30 A. Yar, A. Karabiber, A. Ozen, F. Ozel, and S. Coskun, "Flexible nanofiber based triboelectric nanogenerators with high power conversion", Renew. Energy, Vol. 162, pp. 1428-1437, 2020.   DOI
31 Y. Yu, Z. Li, Y. Wang, S. Gong, and X. Wang, "Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development", Adv. Mater., Vol. 27, No. 33, pp. 4938-4944, 2015.   DOI
32 X. Zhang, S. Lv, X. Lu, H. Yu, T. Huang, Q. Zhang, and M. Zhu, "Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation", Nano Energy, Vol. 75, p. 104894, 2020.   DOI
33 Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, and Z. L. Wang, "Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators", Nat. Commun., Vol. 6, No. 1, pp. 1-8, 2015.
34 H. J. Hwang, J. S. Kim, W. Kim, H. Park, D. Bhatia, E. Jee, Y. S. Chung, D. H. Kim, and D. Choi, "An ultra-mechanosensitive visco-poroelastic polymer ion pump for continuous self-powering kinematic triboelectric nanogenerators", Adv. Energy Mater., Vol. 9, No. 17, p. 1803786, 2019.   DOI
35 F. R. Fan, Z. Q. Tian, and Z. L. Wang, "Flexible triboelectric generator", Nano Energy, Vol. 1, No. 2, pp. 328- 334, 2012.   DOI
36 F. R. Fan, J. Luo, W. Tang, C. Li, C. Zhang, Z. Tian, and Z. L. Wang, "Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms", J. Mater. Chem. A, Vol. 2, No. 33, pp. 13219-13225, 2014.   DOI
37 Z. H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, and Z. L. Wang, "Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials", ACS Nano, Vol. 7, No. 5, pp. 4554-4560, 2013.   DOI
38 J. Xiong, H. Luo, D. Gao, X. Zhou, P. Cui, G. Thangavel, K. Parida, and P. S. Lee, "Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor", Nano Energy, Vol. 61, pp. 584-593, 2019.   DOI
39 J. Chen, and Z. L. Wang, "Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator", Joule, Vol. 1, No. 3, pp. 480-521, 2017.   DOI
40 H. J. Ryoo, C. W. Lee, J. W. Han, W. Kim, and D. Choi, "A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions", J. Sens. Technol., Vol. 29, No. 5, pp. 312-322, 2020.   DOI
41 Y. Y. Ba, J. F. Bao, H. T. Deng, Z. Y. Wang, X. W. Li, T. Gong, W. Huang, and X. S. Zhang, "Single-Layer Triboelectric Nanogenerators Based on Ion-Doped Natural Nanofibrils", ACS Appl. Mater. Interfaces, Vol. 12, No. 38, pp. 42859-42867, 2020.   DOI
42 J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, and C. Hu, "Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film", ACS Appl. Mater. Interfaces, Vol. 8, No. 1, pp. 736-744, 2016.   DOI
43 H. Park, J. Kim, and J. H. Lee, "Triboelectrification based Multifunctional Tactile Sensors", J. Sens. Technol., Vol. 31, No. 3, pp. 139-144, 2022.   DOI
44 G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li, and X. Wang, "Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using a TiO3/polydimethylsiloxane composite film", ACS Appl. Mater. Interfaces, Vol. 8, No. 50, pp. 34335-34341, 2016.   DOI
45 Y. H. Kwon, S. H. Shin, Y. H. Kim, J. Y. Jung, M. H. Lee, and J. Nah, "Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators", Nano Energy, Vol. 25, pp. 225-231, 2016.   DOI
46 S. Bayan, S. Pal, and S. K. Ray, "Interface engineered silver nanoparticles decorated g-C3N4 nanosheets for textile based triboelectric nanogenerators as wearable power sources", Nano Energy, Vol. 94, p. 106928, 2022.   DOI
47 H. J. Hwang, Y. Lee, C. Lee, Y. Nam, J. Park, D. Choi, and D. Kim, "Mesoporous highly-deformable composite polymer for a gapless triboelectric nanogenerator via a one-step metal oxidation process", Micromachines, Vol. 9, No. 12, pp. 656(1)-656(11), 2018.   DOI
48 W. Kim, J. H. Park, H. J. Hwang, Y. S. Rim, and D. Choi, "Interfacial molecular engineering for enhanced polarization of negative tribo-materials", Nano Energy, Vol. 96, p. 107110, 2022.   DOI
49 J. Dong, C. Xu, L. Zhu, X. Zhao, H. Zhou, H. Liu, G. Xu, G. Wang, G. Zhou, and Q. Zeng, "A high voltage direct current droplet-based electricity generator inspired by thunderbolts", Nano Energy, Vol. 90, p. 106567, 2021.   DOI
50 L. Wang, Y. Song, W. Xu, W. Li, Y. Jin, S. Gao, S. Yang, C. Wu, S. Wang, and Z. Wang, "Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator", EcoMat, Vol. 3, No. 4, pp. e12116(1)-e12116(9), 2021.
51 G. G. Cheng, S. Y. Jiang, K. Li, Z. Q. Zhang, Y. Wang, N. Y. Yuan, J. N. Ding, and W. Zhang, "Effect of argon plasma treatment on the output performance of triboelectric nanogenerator", Appl. Surf. Sci., Vol. 412, pp. 350-356, 2017.   DOI
52 X. Cheng, B. Meng, X. Chen, M. Han, H. Chen, Z. Su, M. Shi, and H. Zhang, "Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator", Small, Vol. 12, No. 2, pp.229-236, 2016.   DOI
53 X. Cheng, L. Miao, Z. Su, H. Chen, Y. Song, X. Chen, and H. Zhang, "Controlled fabrication of nanoscale wrinkle structure by fluorocarbon plasma for highly transparent triboelectric nanogenerator", Microsyst. Nanoeng., Vol. 3, No. 1, pp. 1-9, 2017.
54 C. Lee, S. Yang, D. Choi, W. Kim, J. Kim, and J. Hong, "Chemically surface-engineered polydimethylsiloxane layer via plasma treatment for advancing textile-based triboelectric nanogenerators", Nano Energy, Vol. 57, pp. 353-362, 2019.   DOI
55 Q. Liang, X. Yan, X. Liao, and Y. Zhang, "Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics", Nano Energy, Vol. 25, pp. 18-25, 2016,   DOI
56 R. Wen, J. Guo, A. Yu, K. Zhang, J. Kou, Y. Zhu, Y. Zhang, B. W. Li, and J. Zhai, "Remarkably enhanced triboelectric nanogenerator based on flexible and transparent monolayer titania nanocomposite", Nano Energy, Vol. 50, pp. 140-147, 2018.   DOI
57 C. Cai, J. Mo, Y. Lu, N. Zhang, Z. Wu, S. Wang, and S. Nie, "Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment", Nano Energy, Vol. 83, p. 105833, 2021.   DOI