DOI QR코드

DOI QR Code

Interfacial Material Engineering for Enhancing Triboelectric Nanogenerators

  • Nguyen, Dinh Cong (School of Mechanical Engineering, College of Engineering, Sungkyunkwan University) ;
  • Choi, Dukhyun (School of Mechanical Engineering, College of Engineering, Sungkyunkwan University)
  • 투고 : 2022.06.30
  • 심사 : 2022.07.27
  • 발행 : 2022.07.31

초록

Triboelectric nanogenerators (TENGs), a new green energy, that have various potential applications, such as energy harvesters and self-powered sensors. The output performance of TENGs has been improving rapidly, and their output power significantly increased since they were first reported owing to improved triboelectrification materials and interfacial material engineering. Because the operation of a TENG is based on contact electrification in which electric charges are exchanged at the interface between two materials, its output can be increased by increasing the contact area and charge density. Material surface modification with microstructures or nanostructures has increased the output performance of TENGs significantly because not only does the sharp micro/nano morphology increases the contact area during friction, but it also increases the charge density. Chemical treatment in which ions or functional groups are added has also been used to improve the performance of TENGS by modifying the work functions, charge densities, and dielectric constants of the triboelectric materials. In addition, ultrahigh output power from TENGs without using new materials or treatments has been obtained in many studies in which special structures were designed to control the current release or to collect the charge current directly. In this review, we discuss physical and chemical treatments, bulk modifications, and interfacial engineering for enhancing TENG performance by improving contact electrification and electrostatic induction.

키워드

과제정보

This study was supported by the Technology Innovation Program (20013794, Center for Composite Materials and Concurrent Design) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea).

참고문헌

  1. F. R. Fan, Z. Q. Tian, and Z. L. Wang, "Flexible triboelectric generator", Nano Energy, Vol. 1, No. 2, pp. 328- 334, 2012. https://doi.org/10.1016/j.nanoen.2012.01.004
  2. F. R. Fan, J. Luo, W. Tang, C. Li, C. Zhang, Z. Tian, and Z. L. Wang, "Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms", J. Mater. Chem. A, Vol. 2, No. 33, pp. 13219-13225, 2014. https://doi.org/10.1039/c4ta02747g
  3. G. Zhu, B. Peng, J. Chen, Q. Jing, and Z. L. Wang, "Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications", Nano Energy, Vol. 14, pp. 126-138, 2015. https://doi.org/10.1016/j.nanoen.2014.11.050
  4. Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, and Z. L. Wang, "Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators", Nat. Commun., Vol. 6, No. 1, pp. 1-8, 2015.
  5. Z. H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, and Z. L. Wang, "Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials", ACS Nano, Vol. 7, No. 5, pp. 4554-4560, 2013. https://doi.org/10.1021/nn401256w
  6. L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, and W. Yang, "Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops", Adv. Mater., Vol. 28, No. 8, pp. 1650-1656, 2016. https://doi.org/10.1002/adma.201504462
  7. Q. Liang, X. Yan, X. Liao, and Y. Zhang, "Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics", Nano Energy, Vol. 25, pp. 18-25, 2016, https://doi.org/10.1016/j.nanoen.2016.04.033
  8. J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi, Q. Jing, H. Guo, Z. Wen, K.C. Pradel, S. Niu, "Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy", ACS Nano, 9, pp. 3324-3331, 2015. https://doi.org/10.1021/acsnano.5b00534
  9. J. Xiong, H. Luo, D. Gao, X. Zhou, P. Cui, G. Thangavel, K. Parida, and P. S. Lee, "Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor", Nano Energy, Vol. 61, pp. 584-593, 2019. https://doi.org/10.1016/j.nanoen.2019.04.089
  10. J. Chen, and Z. L. Wang, "Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator", Joule, Vol. 1, No. 3, pp. 480-521, 2017. https://doi.org/10.1016/j.joule.2017.09.004
  11. Z. Wu, W. Ding, Y. Dai, K. Dong, C. Wu, L. Zhang, Z. Lin, J. Cheng, and Z. L. Wang, "Self-powered multifunctional motion sensor enabled by magnetic-regulated triboelectric nanogenerator", ACS Nano, Vol. 12, No. 6, pp. 5726-5733, 2018. https://doi.org/10.1021/acsnano.8b01589
  12. H. J. Ryoo, C. W. Lee, J. W. Han, W. Kim, and D. Choi, "A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions", J. Sens. Technol., Vol. 29, No. 5, pp. 312-322, 2020. https://doi.org/10.46670/JSST.2020.29.5.312
  13. F. Yi, L. Lin, S. Niu, P. K. Yang, Z. Wang, J. Chen, Y. Zhou, Y. Zi, J. Wang, and Q. Liao, "Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors", Adv. Funct. Mater., Vol. 25, No. 24, pp. 3688-3696, 2015. https://doi.org/10.1002/adfm.201500428
  14. Y. Jung and H. Cho, "Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity", J. Sens. Technol., Vol. 31, No. 3, pp. 145-150, 2022. https://doi.org/10.46670/JSST.2022.31.3.145
  15. C. Cai, J. Mo, Y. Lu, N. Zhang, Z. Wu, S. Wang, and S. Nie, "Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment", Nano Energy, Vol. 83, p. 105833, 2021. https://doi.org/10.1016/j.nanoen.2021.105833
  16. N. Rubab, and S. W. Kim, "Triboelectric Nanogenerators for Self-powered Sensors", J. Sens. Technol., Vol. 31, No. 2, pp. 79-84, 2022. https://doi.org/10.46670/JSST.2022.31.2.79
  17. H. G. Menge, N. D. Huynh, H. J. Hwang, S. Han, D. Choi, and Y. T. Park, "Designable skin-like triboelectric nanogenerators using layer-by-layer self-assembled polymeric nanocomposites", ACS Energy Lett., Vol. 6, No. 7, pp. 2451-2459, 2021. https://doi.org/10.1021/acsenergylett.1c00739
  18. H. Park, J. Kim, and J. H. Lee, "Triboelectrification based Multifunctional Tactile Sensors", J. Sens. Technol., Vol. 31, No. 3, pp. 139-144, 2022. https://doi.org/10.46670/JSST.2022.31.3.139
  19. H. Wu, S. Wang, Z. Wang, and Y. Zi, "Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG)", Nat. Commun., Vol. 12, No. 1, pp. 1-8, 2021. https://doi.org/10.1038/s41467-020-20314-w
  20. B. Dudem, N. D. Huynh, W. Kim, D. H. Kim, H. J. Hwang, D. Choi, and J. S. Yu, "Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting", Nano Energy, Vol. 42, pp. 269-281, 2017. https://doi.org/10.1016/j.nanoen.2017.10.040
  21. F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, "Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films", Nano Lett., Vol. 12, No. 6, pp. 3109-3114, 2012. https://doi.org/10.1021/nl300988z
  22. J. Huang, X. Fu, G. Liu, S. Xu, X. Li, C. Zhang, and L. Jiang, "Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing", Nano Energy, Vol. 62, pp. 638-644, 2019. https://doi.org/10.1016/j.nanoen.2019.05.081
  23. H. J. Kim, J. H. Kim, K. W. Jun, J. H. Kim, W. C. Seung, O. H. Kwon, J. Y. Park, S. W. Kim, and I. K. Oh, "Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG", Adv. Energy Mater, Vol. 6, No. 8, p. 1502329, 2016. https://doi.org/10.1002/aenm.201502329
  24. T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang, and M. Zhu, "Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide", Sci. Rep., Vol. 5, No. 1, pp. 1-8, 2015.
  25. G. Q. Gu, C. B. Han, C. X. Lu, C. He, T. Jiang, Z. L. Gao, C. J. Li, and Z. L. Wang, "Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal", ACS Nano, Vol. 11, No. 6, pp. 6211-6217, 2017. https://doi.org/10.1021/acsnano.7b02321
  26. A. Yar, A. Karabiber, A. Ozen, F. Ozel, and S. Coskun, "Flexible nanofiber based triboelectric nanogenerators with high power conversion", Renew. Energy, Vol. 162, pp. 1428-1437, 2020. https://doi.org/10.1016/j.renene.2020.08.030
  27. X. Zhang, S. Lv, X. Lu, H. Yu, T. Huang, Q. Zhang, and M. Zhu, "Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation", Nano Energy, Vol. 75, p. 104894, 2020. https://doi.org/10.1016/j.nanoen.2020.104894
  28. G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, and Z. L. Wang, "Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator", Nano Lett., Vol. 13, No. 2, pp. 847-853, 2013. https://doi.org/10.1021/nl4001053
  29. Y. Y. Ba, J. F. Bao, H. T. Deng, Z. Y. Wang, X. W. Li, T. Gong, W. Huang, and X. S. Zhang, "Single-Layer Triboelectric Nanogenerators Based on Ion-Doped Natural Nanofibrils", ACS Appl. Mater. Interfaces, Vol. 12, No. 38, pp. 42859-42867, 2020. https://doi.org/10.1021/acsami.0c11932
  30. J. W. Lee, S. Jung, J. Jo, G. H. Han, D. M. Lee, J. Oh, H. J. Hwang, D. Choi, S. W. Kim, and J. H. Lee, "Sustainable highly charged C 60-functionalized polyimide in a non-contact mode triboelectric nanogenerator", Energy Environ. Sci., Vol. 14, No. 2, pp. 1004-1015, 2021. https://doi.org/10.1039/D0EE03057K
  31. W. Kim, T. Okada, H. W. Park, J. Kim, S. Kim, S. W. Kim, S. Samukawa, and D. Choi, "Surface modification of triboelectric materials by neutral beams", J. Mater. Chem. A, Vol. 7, No. 43, pp. 25066-25077, 2019. https://doi.org/10.1039/c9ta09990e
  32. G. G. Cheng, S. Y. Jiang, K. Li, Z. Q. Zhang, Y. Wang, N. Y. Yuan, J. N. Ding, and W. Zhang, "Effect of argon plasma treatment on the output performance of triboelectric nanogenerator", Appl. Surf. Sci., Vol. 412, pp. 350-356, 2017. https://doi.org/10.1016/j.apsusc.2017.03.255
  33. X. Cheng, B. Meng, X. Chen, M. Han, H. Chen, Z. Su, M. Shi, and H. Zhang, "Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator", Small, Vol. 12, No. 2, pp.229-236, 2016. https://doi.org/10.1002/smll.201502720
  34. X. Cheng, L. Miao, Z. Su, H. Chen, Y. Song, X. Chen, and H. Zhang, "Controlled fabrication of nanoscale wrinkle structure by fluorocarbon plasma for highly transparent triboelectric nanogenerator", Microsyst. Nanoeng., Vol. 3, No. 1, pp. 1-9, 2017.
  35. C. Lee, S. Yang, D. Choi, W. Kim, J. Kim, and J. Hong, "Chemically surface-engineered polydimethylsiloxane layer via plasma treatment for advancing textile-based triboelectric nanogenerators", Nano Energy, Vol. 57, pp. 353-362, 2019. https://doi.org/10.1016/j.nanoen.2018.12.051
  36. R. Wen, J. Guo, A. Yu, K. Zhang, J. Kou, Y. Zhu, Y. Zhang, B. W. Li, and J. Zhai, "Remarkably enhanced triboelectric nanogenerator based on flexible and transparent monolayer titania nanocomposite", Nano Energy, Vol. 50, pp. 140-147, 2018. https://doi.org/10.1016/j.nanoen.2018.05.037
  37. S. Gao, R. Wang, C. Ma, Z. Chen, Y. Wang, M. Wu, Z. Tang, N. Bao, D. Ding, and W. Wu, "Wearable high-dielectric-constant polymers with core-shell liquid metal inclusions for biomechanical energy harvesting and a selfpowered user interface", J. Mater. Chem. A, Vol. 7, No. 12, pp. 7109-7117, 2019. https://doi.org/10.1039/c9ta01249d
  38. Y. Yu, Z. Li, Y. Wang, S. Gong, and X. Wang, "Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development", Adv. Mater., Vol. 27, No. 33, pp. 4938-4944, 2015. https://doi.org/10.1002/adma.201502546
  39. G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li, and X. Wang, "Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using a TiO3/polydimethylsiloxane composite film", ACS Appl. Mater. Interfaces, Vol. 8, No. 50, pp. 34335-34341, 2016. https://doi.org/10.1021/acsami.6b11108
  40. Y. H. Kwon, S. H. Shin, Y. H. Kim, J. Y. Jung, M. H. Lee, and J. Nah, "Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators", Nano Energy, Vol. 25, pp. 225-231, 2016. https://doi.org/10.1016/j.nanoen.2016.05.002
  41. J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, and C. Hu, "Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film", ACS Appl. Mater. Interfaces, Vol. 8, No. 1, pp. 736-744, 2016. https://doi.org/10.1021/acsami.5b09907
  42. H. J. Hwang, J. S. Kim, W. Kim, H. Park, D. Bhatia, E. Jee, Y. S. Chung, D. H. Kim, and D. Choi, "An ultra-mechanosensitive visco-poroelastic polymer ion pump for continuous self-powering kinematic triboelectric nanogenerators", Adv. Energy Mater., Vol. 9, No. 17, p. 1803786, 2019. https://doi.org/10.1002/aenm.201803786
  43. X. Xia, J. Chen, G. Liu, M.S. Javed, X. Wang, and C. Hu, "Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator", Carbon, Vol. 111, pp. 569-576, 2017. https://doi.org/10.1016/j.carbon.2016.10.041
  44. S. Bayan, S. Pal, and S. K. Ray, "Interface engineered silver nanoparticles decorated g-C3N4 nanosheets for textile based triboelectric nanogenerators as wearable power sources", Nano Energy, Vol. 94, p. 106928, 2022. https://doi.org/10.1016/j.nanoen.2022.106928
  45. S. Kuntharin, V. Harnchana, A. Klamchuen, K. Sinthiptharakoon, P. Thongbai, V. Amornkitbamrung, P. Chindaprasirt, "Boosting the Power Output of a CementBased Triboelectric Nanogenerator by Enhancing Dielectric Polarization with Highly Dispersed Carbon Black Nanoparticles toward Large-Scale Energy Harvesting from Human Footsteps", ACS Sustain. Chem. Eng., Vol. 10, No. 14, pp. 4588-4598, 2022. https://doi.org/10.1021/acssuschemeng.1c08629
  46. J. Chun, J. W. Kim, W. S. Jung, C. Y. Kang, S. W. Kim, Z. L. Wang, and J. M. Baik, "Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments", Energy Environ. Sci., Vol. 8, No. 10, pp. 3006- 3012, 2015. https://doi.org/10.1039/C5EE01705J
  47. H. J. Hwang, Y. Lee, C. Lee, Y. Nam, J. Park, D. Choi, and D. Kim, "Mesoporous highly-deformable composite polymer for a gapless triboelectric nanogenerator via a one-step metal oxidation process", Micromachines, Vol. 9, No. 12, pp. 656(1)-656(11), 2018. https://doi.org/10.3390/mi9120656
  48. Y. Lee, S. H. Cha, Y. W. Kim, D. Choi, and J. Y. Sun, "Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators", Nat. Commun., Vol. 9. No. 1, pp. 1-8, 2018. https://doi.org/10.1038/s41467-017-02088-w
  49. H. W. Park, N. D. Huynh, W. Kim, C. Lee, Y. Nam, S. Lee, K. B. Chung, and D. Choi, "Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators", Nano Energy, Vol. 50, pp. 9-15, 2018. https://doi.org/10.1016/j.nanoen.2018.05.024
  50. W. Kim, J. H. Park, H. J. Hwang, Y. S. Rim, and D. Choi, "Interfacial molecular engineering for enhanced polarization of negative tribo-materials", Nano Energy, Vol. 96, p. 107110, 2022. https://doi.org/10.1016/j.nanoen.2022.107110
  51. W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, and R. X. Xu, "A droplet-based electricity generator with high instantaneous power density", Nature, Vol. 578, No. 7795, pp. 392-396, 2020. https://doi.org/10.1038/s41586-020-1985-6
  52. A. Riaud, C. Wang, J. Zhou, W. Xu, Z. Wang, "Hydrodynamic constraints on the energy efficiency of droplet electricity generators", Microsyst. Nanoeng, Vol. 7, No. 1, pp. 1-10, 2021. https://doi.org/10.1038/s41378-020-00227-w
  53. L. Wang, Y. Song, W. Xu, W. Li, Y. Jin, S. Gao, S. Yang, C. Wu, S. Wang, and Z. Wang, "Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator", EcoMat, Vol. 3, No. 4, pp. e12116(1)-e12116(9), 2021.
  54. X. Wang, S. Fang, J. Tan, T. Hu, W. Chu, J. Yin, J. Zhou, and W. Guo, "Dynamics for droplet-based electricity generators", Nano Energy, Vol. 80, p. 105558, 2021. https://doi.org/10.1016/j.nanoen.2020.105558
  55. Q. Zhang, Y. Li, H. Cai, M. Yao, H. Zhang, L. Guo, Z. Lv, M. Li, X. Lu, and C. Ren, "A Single-Droplet Electricity Generator Achieves an Ultrahigh Output Over 100 V Without Pre-Charging", Adv. Mater., Vol. 33, No. 51, p. 2105761, 2021. https://doi.org/10.1002/adma.202105761
  56. J. Dong, C. Xu, L. Zhu, X. Zhao, H. Zhou, H. Liu, G. Xu, G. Wang, G. Zhou, and Q. Zeng, "A high voltage direct current droplet-based electricity generator inspired by thunderbolts", Nano Energy, Vol. 90, p. 106567, 2021. https://doi.org/10.1016/j.nanoen.2021.106567
  57. N. Zhang, H. Gu, K. Lu, S. Ye, W. Xu, H. Zheng, Y. Song, C. Liu, J. Jiao, and Z. Wang, "A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting", Nano Energy, Vol. 82, p. 105735, 2021. https://doi.org/10.1016/j.nanoen.2020.105735