Browse > Article
http://dx.doi.org/10.14478/ace.2019.1051

Recent Research Trends in Explosive Detection through Electrochemical Methods  

Lee, Wonjoo (Department of Ammunitions Maintenance, Daeduk University)
Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.4, 2019 , pp. 399-407 More about this Journal
Abstract
The development of explosive detection technology in a security environment and fear of terrorism at homeland and abroad has been one of the most important issues. Moreover, research works on the explosive detection are highly required to achieve domestic production technology due to the implementation of aviation security performance certification system. Traditionally, explosives are detected by using classical chemical analyses. However, in the view of high sensitivity, rapid analysis, miniaturization and portability electrochemical methods are considered as promising. Most of electrochemical explosive detection technologies are developed in USA, China, Israel, etc. This review highlights the principle and research trend of electrochemical explosive detection technologies carried out overseas in addition to the research direction for future exploration.
Keywords
Explosive detection; Electrochemical analysis; Sensor; TNT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. S. Silvester and L. Aldous, Chapter 10: Electrochemical detection using ionic liquids, in: D. W. M. Arrigan (Ed.), Electrochemical Strategies in Detection Science, pp. 341-386, The Royal Society of Chemistry, Cambridge, UK (2016).
2 C. Kang, J. Lee, and D. S. Silvester, Electroreduction of 2,4,6-trinitrotoluene in room temperature ionic liquids: Evidence of an EC2 mechanism, J. Phys. Chem. C, 120, 10997-11005 (2016).   DOI
3 E. S. Forzani, D. Lu, M. J. Leright, A. D. Aguilar, F. Tsow, R. A. Iglesias, Q. Zhang, J. Lu, J. Li, and N. Tao, A hybrid electrochemical- colorimetric sensing platform for detection of explosives, J. Am. Chem. Soc., 131, 1093-1391 (2009)0.
4 C. X. Guo, Z. S. Lu, Y. Lei, and C. M. Li, Ionic liquid-graphene composite for ultratrace explosive trinitrotoluene detection, Electrochem. Commun., 12, 1237-1240 (2010).   DOI
5 S. Guo, D. Wen, Y. Zhai, S. Dong, and E. Wang, Ionic liquidegraphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene, Biosens. Bioelectron., 26, 3475-3481 (2011).   DOI
6 C. Xiao, A. Rehman, and X. Zeng, Dynamics of redox processes in ionic liquids and their interplay for discriminative electrochemical sensing, Anal. Chem., 84, 1416-1424 (2012).   DOI
7 E. Fernandez, L. Vidal, J. Iniesta, J. P. Metters, C. E. Banks, and A. Canals, Screen printed electrode-based electrochemical detector coupled with in-situ ionicliquid-assisted dispersive liquid/liquid microextraction for determination of 2,4,6-trinitrotoluene, Anal. Bioanal. Chem., 406, 2197-2204 (2014).   DOI
8 S. Saglam, A. Uzer, Y. Tekdemir, E. Ercag, and R. Apak, Electrochemical sensor for nitroaromatic type energetic materials using gold nanoparticles/poly(o-phenylenediamine-aniline) film modified glassy carbon electrode, Talanta, 139, 181-188 (2015).   DOI
9 T. H. Seah, H. L. Poh, C. K. Chua, Z. Sofer, and M. Pumera, Towards graphene applications in security: The electrochemical detection of trinitrotoluene in seawater on Hydrogenated graphene, Electroanalysis, 26, 62-68 (2014).   DOI
10 J. S. Caygill, S. D. Collyer, J. L. Holmes, F. Davis, and S. P. J. Higson, Electrochemical detection of TNT at cobalt phthalocyanine mediated screen-printed electrodes and application to detection of airborne vapours, Electroanalysis, 25, 2445-2452 (2013).   DOI
11 W. R. de Araujo and T. R. L. C. Paixao, Fabrication of disposable electrochemical devices using silver ink and office paper, Analyst, 139, 2742-2747 (2014).   DOI
12 J. Riedel, M. Berthold, and U. Guth, Electrochemical determination of dissolved nitrogen-containing explosives, Electrochim. Acta, 128, 85-90 (2014).   DOI
13 Y. T. Yew, A. Ambrosi, and M. Pumera, Nitroaromatic explosives detection using electrochemically exfoliated graphene, Sci. Rep., 6, 33276 (2016).   DOI
14 J. S. Erickson, L. C. Shriver-Lake, D. Zabetakis, D. A. Stenger, and S. A. Trammell, A simple and inexpensive electrochemical assay for the identification of nitrogen containing explosives in the field, Sensors, 17, 1769-1780 (2017).   DOI
15 C. Tan, M. Z. M. Nasir, A. Ambrosi, and M. Pumera, 3D printed electrodes for detection of nitroaromatic explosives and nerve agents, Anal. Chem., 89, 8995-9001 (2017).   DOI
16 S. Parajuli and W. Miao, Sensitive determination of hexamethylene triperoxide diamine explosives, using electrogenerated chemiluminescence enhanced by silver nitrate, Anal. Chem., 81, 5267-5272 (2009).   DOI
17 S. V. F. Castro, M. N. T. Silva, T. F. Tormin, M. H. P. Santana, E. Nossol, E. M. Richter, and R. A. A. Munoz, Highly-sensitive voltammetric detection of trinitrotoluene on reduced graphene oxide/carbon nanotube nanocomposite sensor, Anal. Chim. Acta., 1035, 14-21 (2018).   DOI
18 R. Zhang, C. L. Sun, Y. J. Lu, and W. Chen, Graphene nanoribbonsupported PtPd concave nanocubes for electrochemical detection of TNT with high sensitivity and selectivity, Anal. Chem., 87, 12262-12269 (2015).   DOI
19 S. Hrapovic, E. Majid, Y. Liu, K. Male, and J. H. Y. Luong, Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds, Anal. Chem., 78, 5504-5512 (2006).   DOI
20 Y. Qu, Y. Liu, T. Zhou, G. Shi, and L. Jin, Electrochemical sensor prepared from molecularly imprinted polymer for recognition of 1,3-dinitrobenzene (DNB), Chin. J. Chem., 27, 2043-2048 (2009).   DOI
21 Z. Cai, F. Li, P. Wu, L. Ji, H. Zhang, C. Cai, and D. F. Gervasio, Synthesis of nitrogen-doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene, Anal. Chem., 87, 11803-11811 (2015).   DOI
22 H. Li, C. Xie, S. Li, and K. Xu, Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos, Colloids Surf. B, 89, 175-181 (2012).   DOI
23 M. Pesavento, G. D'Agostino, G. Alberti, R. Biesuz, and D. Merli, Voltammetric platform for detection of 2,4,6-trinitrotoluene based on a molecularly imprinted polymer, Anal. Bioanal. Chem., 405, 3359-3570 (2013).   DOI
24 T. Alizadeh, M. Zare, M. R. Ganjali, P. Norouzi, and B. Tavana, A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples, Biosens. Bioelectron., 25, 1166-1172 (2010).   DOI
25 T. P. Huynh, M. Sosnowska, J. W. Sobczak, C. B. Kc, N. V. Nesterov, F. D'Souza, and W. Kutner, Simultaneous chronoamperometry and piezoelectric microgravimetry determination of nitroaromatic explosives using molecularly imprinted thiophene polymers, Anal. Chem., 85, 8361-8368 (2013).   DOI
26 D. Lu, A. Cagan, R. A. A. Munoz, T. Tangkuaram, and J. Wang, Highly sensitive electrochemical detection of trace liquid peroxide explosives at a prussianblue 'artificial-peroxidase' modified electrode, Analyst, 131, 1279-1281 (2006).   DOI
27 X. Fu, R. F. Benson, J. Wang, and D. Fries, Remote underwater electrochemical sensing system for detecting explosive residues in the field, Sens. Actuators B, 106, 296-301 (2005).   DOI
28 H. G. Prabu, M. B. Talawar, T. Mukundan, and S. N. Asthana, Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials, Combust. Explos. Shock Waves, 47, 87-95 (2011).   DOI
29 A. Uzer, S. Saglam, Y. Tekdemir, B. Ustamehmetoglu, E. Sezer, E. Ercag, and R. Apak, Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry, Talanta, 115, 768-778 (2013).   DOI
30 S. Mamo and J. Gonzalez-Rodriguez, Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP), Sensors, 14, 23269-23282 (2014).   DOI
31 G. Shi, Y. Qu, Y. Zhai, Y. Liu, Z. Sun, J. Yang, L. Jin, $ {MSU/PDDA}_{n}$ layer-by-layer assembled modified sensor for electrochemical detection of ultratrace explosive nitroaromatic compounds, Electrochem. Commun., 9, 1719-1724 (2007).   DOI
32 D. F. Laine and I. F. Cheng, Electrochemical detection of the explosive, hexamethylene triperoxide diamine (HMTD), Microchem. J., 91, 125-128 (2009).   DOI
33 S. A. Trammell, M. Zeinali, B. J. Melde, P. T. Charles, F. L. Velez, M. A. Dinderman, A. Kusterbeck, and M. A. Markowitz, Nanoporous organosilicas as preconcentration materials for the electrochemical detection of trinitrotoluene, Anal. Chem., 80, 4627-4633 (2008).   DOI
34 L. Tang, H. Feng, J. Cheng, and J. Li, Uniform and rich-wrinkled electrophoretic deposited graphene film: A robust electrochemical platform for TNT sensing, Chem. Commun., 46, 5882-5884 (2010).   DOI
35 J. Zang, C. X. Guo, F. Hu, L. Yu, and C. M. Li, Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon, Anal. Chim. Acta, 683, 187-191 (2011).   DOI
36 Z. Guo, A. Florea, C. Cristea, F. Bessueille, F. Vocanson, F. Goutaland, A. Zhang, R. Sandulescu, F. Lagarde, and N. Jaffrezic-Renault, 1,3,5-Trinitrotoluene detection by a molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework, Sens. Actuators B, 207, 960-966 (2015).   DOI
37 C. X. Guo, Y. Lei, and C. M. Li, Porphyrin functionalized graphene for sensitive electrochemical detection of ultratrace explosives, Electroanalysis, 23, 885-893 (2011).   DOI
38 Enforcement Regulations of Aviation Act of Korea, Article 14, 2-11 (2018).
39 J. S. Caygill, F. Davis, and S. P. J. Higson, Current trends in explosive detection techniques, Talanta, 88, 14-29 (2012).   DOI
40 T.-W. Chen, Z.-H. Sheng, K. Wang, F.-B. Wang, and X.-H. Xia, Determination of explosives using electrochemically reduced graphene, Chem. Asian J., 6, 1210-1216 (2011).   DOI
41 B. Rezaei and S. Damiri, Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples, J. Hazard. Mater., 183, 138-144 (2010).   DOI
42 W. Chen, Y. Wang, C. Brueckner, C. M. Li, and Y. Lei, Poly [meso-tetrakis(2-thienyl) porphyrin] for the sensitive electrochemical detection of explosives, Sens. Actuators B, 147, 191-197 (2010).   DOI
43 M.-C. Chuang, J. R. Windmiller, P. Santhosh, G. V. Ramirez, M. Galik, T.-Y. Chou, and J. Wang, Textile-based electrochemical sensing: Effect of fabric substrate and detection of nitroaromatic explosives, Electroanalysis, 22, 2511-2518 (2010).   DOI
44 M. Galik, A. M. O'Mahony, and J. Wang, Cyclic and square-wave voltammetric signatures of nitro-containing explosives, Electroanalysis, 23, 1193-1204 (2011).   DOI
45 K. Malzahn, J. R. Windmiller, G. Valdes-Ramirez, M. J. Schoening, and J. Wang, Wearable electrochemical sensors for in situ analysis in marine environments, Analyst, 136, 2912-2917 (2011).   DOI
46 S. Benson, N. Speers, and V. Otieno-Alego, Chapter 17: Portable explosive detection instruments, in: A. Beveridge (Ed.), Forensic Investigation of Explosions, 2nd ed., pp. 691-723, CRC Press, Boca Raton, FL, USA (2012).
47 L. Senesac and T. G. Thundat, Nanosensors for trace explosive detection, Mater. Today, 11, 28-36 (2008).
48 M. S. Goh and M. Pumera, Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: The comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles, Anal. Bioanal. Chem., 399, 127-131 (2011).   DOI
49 M. Liu and W. Chen, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy, Biosens. Bioelectron., 46, 68-37 (2013).   DOI
50 W. Chen, N. B. Zuckerman, J. P. Konopelski, and S. Chen, Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives, Anal. Chem., 82, 461-465 (2010)   DOI
51 A. M. O'Mahony and J. Wang, Nanomaterial-based electrochemical detection of explosives: A review of recent developments, Anal. Methods, 5, 4296-4309 (2013).   DOI
52 H. S. Toh, A. Ambrosi, and M. Pumera, Electrocatalytic effect of ZnO nanoparticles on reduction of nitroaromatic compounds, Catal. Sci. Technol., 3, 123-127 (2013).   DOI
53 C. K. Chua, M. Pumera, and L. Rulísek, Reduction pathways of 2,4,6-trinitrotoluene: An electrochemical and theoretical study, J. Phys. Chem. C, 116, 4243-4251 (2012).   DOI
54 T.-W. Chen, J.-Y. Xu, Z.-H. Sheng, K. Wang, F.-B. Wang, T.-M. Liang, and X.-H. Xia, Enhanced electrocatalytic activity of nitrogen- doped graphene for the reduction of nitro explosives, Electrochem. Commun., 16, 30-33 (2012).   DOI
55 D. Nie, D. Jiang, D. Zhang, Y. Liang, Y. Xue, T. Zhou, L. Jin, and G. Shi, Twodimensional molecular imprinting approach for the electrochemical detection of trinitrotoluene, Sens. Actuators B, 156, 43-49 (2011).   DOI
56 B. K. Ong, H. L. Poh, C. K. Chua, and M. Pumera, Graphenes prepared by Hummers, staudenmaier and Hofmann methods for analysis of TNT-based nitroaromatic explosives in seawater, Electroanalysis, 24, 2085-2093 (2012).   DOI
57 R. A. Soomro, O. P. Akyuz, H. Akin, R. Ozturk, and Z. H. Ibupoto, Highly sensitive shape dependent electro-catalysis of TNT molecules using Pd and Pd-Pt alloy based nanostructures, RSC Adv., 6, 44955-44962 (2016).   DOI
58 S. Saglam, A. Uzer, E. Ercag, and R. Apak, Electrochemical determination of TNT, DNT, RDX, and HMX with gold nanoparticles/ poly(carbazole-aniline) film-modified glassy carbon sensor electrodes imprinted for molecular recognition of nitroaromatics and nitramines, Anal. Chem., 90, 7364-7370 (2018).   DOI
59 D. S. Silvester, Recent advances in the use of ionic liquids for electrochemical sensing, Analyst., 136, 4871-4882 (2011).   DOI
60 H. L. Poh and M. Pumera, Nanoporous carbon materials for electrochemical sensing, Chem. Asian J., 7, 412-416 (2012).   DOI
61 A. M. O'Mahony, G. Valdes-Ramirez, J. R. Windmiller, I. A. Samek, and J. Wang, Orthogonal detection of nitroaromatic explosives via direct voltammetry coupled to enzyme-mediated biocatalysis, Electroanalysis, 24, 1811-1816 (2012).   DOI
62 M. Baron, R. Barret, and J.-G. Rodriguez, Analysis and design of a multisensory array for explosive substances based on solid electrodes, Proc. SPIE, 8545, 85450H (2012).
63 S. Parajuli and W. Miao, Sensitive determination of triacetone triperoxide explosives using electrogenerated chemiluminescence, Anal. Chem., 85, 8008-8015 (2013).   DOI
64 J. S. Caygill, S. D. Collyer, J. L. Holmes, F. Davis, and S. P. J. Higson, Disposable screen printed sensors for the electrochemical detection of TNT and DNT, Analyst, 138, 346-352 (2013).   DOI
65 X. Ceto, A. M. O'Mahony, J. Wang, and M. del Valle, Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes, Talanta, 107, 270-276 (2013).   DOI