Browse > Article
http://dx.doi.org/10.5369/JSST.2019.28.3.139

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants  

Lee, Jun Ho (Department of Materials Science and Engineering, Yonsei University)
Lee, Hyun-Sook (Department of Materials Science and Engineering, Yonsei University)
Kim, Wonkyung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of Sensor Science and Technology / v.28, no.3, 2019 , pp. 139-145 More about this Journal
Abstract
Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.
Keywords
Gas sensors; Metal oxide semiconductors; Chemical warfare agent simulants; 2-CEES; DMMP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 https://www.opcw.org/our-work/what-chemical-weapon(retrieved on Apr. 16, 2019).
2 https://www.un.org/disarmament/wmd/bio/1925-geneva-protocol/(retrieved on Apr. 16, 2019).
3 https://www.nti.org/learn/countries/north-korea/chemical/(retrieved on Apr. 16, 2019).
4 R. S. Pilling, G. Bernhardt, C. S. Kim, J. Duncan, C. B. Crothers, D. Kleinschmidt, D. J. Frankel, R. J. Lad, and B. G. Frederick, "Quantifying gas sensor and delivery system response time using GC/MS", Sens. Actuators B Chem., Vol. 96, No. 1-2, pp. 200-214, 2003.   DOI
5 M. A. Makinen, O. A. Anttalainen, and M. E. T. Sillanpaa, "Ion mobility spectrometry and its applications in detection of chemical warfare agents", Anal. Chem., Vol. 82, No. 23, pp. 9594-9600, 2010.   DOI
6 F. Petersson, P. Sulzer, C. A. Mayhew, P. Watts, A. Jordan, L. Mark, and T. D. Mark, "Real?time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time?of?flight mass spectrometry", Rapid Commun. Mass Spectrom., Vol. 23, No. 23, pp. 3875-3880, 2009.   DOI
7 N. Taranenko, J. Pierre, D. Stokes, and T. Vo-Dinh, "Surface-enhanced Raman detection of nerve agent simulant (DMMP and DIMP) vapor on electrochemically prepared silver oxide substrates", J. Raman Spectrosc., Vol. 27, No. 5, pp. 379-384, 1996.   DOI
8 D. E. Tevault and R. E. Pellenbarg, "Measurement of atmospheric pollutants by Raman spectroscopy", Sci. Total Environ., Vol. 73, No. 1-2, pp. 65-69, 1988.   DOI
9 G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, M. Pardo, A. Ponzoni, and A. Vomiero, "Semiconducting tin oxide nanowires and thin films for chemical warfare agents detection", Thin Solid Films, Vol. 517, No. 22, pp. 6156-6160, 2009.   DOI
10 S. C. Lee, H. Y. Choi, S. J. Lee, W. S. Lee, J. S. Huh, D. D. Lee, and J. C. Kim, "The development of $SnO_2$-based recoverable gas sensors for the detection of DMMP", Sens. Actuators B Chem., Vol. 137, No. 1, pp. 239-245, 2009.   DOI
11 S. C. Lee, H. Y. Choi, W. S. Lee, S. J. Lee, D. Ragupathy, D. D. Lee, and J. C. Kim, "Improvement of recovery of $SnO_2$-based thick film gas sensors for dimethyl methylphosphonate (DMMP) detection", Sens. Lett., Vol. 9, No. 1, pp. 101-105, 2011.   DOI
12 H. M. Aliha, A. A. Khodadadi, and Y. Mortazavi, "The sensing behavior of metal oxides (ZnO, CuO, and $Sm_2O_3$) doped-$SnO_2$ for detection of low concentrations of chlorinated volatile organic compounds", Sens. Actuators B Chem., Vol. 181, pp. 637-643, 2013.   DOI
13 L. A. Patil, V. V. Deo, M. D. Shinde, A. R. Bari, and M. P. Kaushik, "Sensing of 2-chloroethyl ethyl sulfide (2-CEES)- a CWA simulant - using pure and platinum doped nanostructured $CdSnO_3$ thin films prepared from ultrasonic spray pyrolysis technique", Sens. Actuators B Chem., Vol. 160, No. 1, pp. 234-243, 2011.   DOI
14 L. Cao, S. R. Segal, S. L. Suib, X. Tang, and S. Satyapal, "Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides", J. Catal., Vol. 194, No. 1, pp. 61-70, 2000.   DOI
15 R. Yoo, S. Yoo, D. Lee, J. Kim, S. Cho, and W. Lee, "Highly selective detection of dimethyl methylphosphonate (DMMP)using CuO nanoparticles /ZnO flowers heterojunction", Sens. Actuators B Chem., Vol. 240, pp. 1099-1105, 2017.   DOI
16 E. Brunol, F. Berger, M. Fromm, and R. Planade, "Detection of dimethyl methylphosphonate (DMMP) by tin dioxide-based gas sensor: Response curve and understanding of the reactional mechanism", Sens. Actuators B Chem., Vol. 120, No. 1, pp. 35-41, 2006.   DOI
17 M. K. Templeton and W. H. Weinberg, "Adsorption and decomposition of dimethyl methylphosphonate on aluminum oxide surface", J. Am. Chem. Soc., Vol. 107, No. 1, pp. 97-108, 1985.   DOI
18 C. S. Kim, R. J. Lad, and C. P. Tripp, "Interaction of organophosphorous compounds with $TiO_2$ and $WO_3$ surfaces probed by vibrational spectroscopy", Sens. Actuators B Chem., Vol. 76, No. 1-3, pp. 442-448, 2001.   DOI
19 A. Ponzoni, C. Baratto, S. Bianchi, E. Comini, M. Ferroni, M. Pardo, M. Vezzoli, A. Vomiero, G. Faglia, and G. Sberveglieri, "Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection", IEEE Sens. J., Vol. 8, No. 6, pp. 735-742, 2008.   DOI
20 W. S. Lee, S. C. Lee, S. J. Lee, D. D. Lee, J. S. Huh, H. K. Jun, and J. C. Kim, "The sensing behavior of $SnO_2$-based thick-film gas sensors at a low concentration of chemical agent simulants", Sens. Actuators B Chem., Vol. 108, No. 1-2, pp. 148-153, 2005.   DOI
21 J. H. Lee, H. Jung, R. Yoo, Y. Park, H. Lee, Y.-S. Choe, and W. Lee, "Real-time selective detection of 2-chloroethyl ethyl sulfide (2-CEES) using an Al-doped ZnO quantum dot sensor coupled with a packed column for gas chromatography", Sens. Actuators B Chem., Vol. 284, pp. 444-450, 2019.   DOI
22 L. A. Patil, V. V. Deo, M. D. Shinde, A. R. Bari, D. M. Patil, and M. P. Kaushik, "Improved 2-CEES sensing performance of spray pyrolized Ru-$CdSnO_3$ nanostructured thin films", Sens. Actuators B Chem., Vol. 191, pp. 130-136, 2014.   DOI
23 R. Yoo, C. Oh, M.-J. Song, S. Cho, and W. Lee, "Sensing properties of ZnO nanoparticles for detection of 2-Chloroethyl Ethyl Sulfide as a mustard simulant", J. Nanosci. Nanotechnol., Vol. 18, No. 2, pp. 1232-1236, 2018.   DOI
24 R. Yoo, D. Lee, S. Cho, and W. Lee, "Doping effect on the sensing properties of ZnO nanoparticles for detection of 2-Chloroethyl ethylsulfide as a mustard simulant", Sens. Actuators B Chem., Vol. 254, pp. 1242-1248, 2018.   DOI
25 http://www.centerforhealthsecurity.org/resources/fact-sheets/pdfs/nerve_agents.pdf (retrieved on Apr. 25, 2019).
26 J. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You, H. Yoon, and J. Jang, "Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application", ACS Nano, Vol. 5, No. 10, pp. 7992-8001, 2011.   DOI
27 A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, and G. Sberveglieri, "Controlled growth and sensing properties of $In_2O_3$ nanowires", Cryst. Growth Des., Vol. 7, No. 12, pp. 2500-2504, 2007.   DOI
28 K.-H. Yun, K.-Y. Yun, G.-Y. Cha, B. H. Lee, J. C. Kim, D. D. Lee, and J. S. Huh, "Gas sensing characteristics of ZnOdoped $SnO_2$ sensors for simulants of the chemical agents", Mater. Sci. Forum, Vol. 486, pp. 9-12, 2005.   DOI
29 R. Yoo, S. Cho, M.-J. Song, and W. Lee, "Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethylphosphonate as a chemical warfare agent simulant", Sens. Actuators B Chem., Vol. 221, pp. 217-223, 2015.   DOI
30 S. C. Lee, S. Y. Kim, W. S. Lee, S. Y. Jung, B. W. Hwang, D. Ragupathy, D. D. Lee, S. Y.Lee, and J. C. Kim, "Effects of textural properties on the response of a $SnO_2$-based gas sensors for the detection of chemical warfare agents", Sensors, Vol. 11, No. 7, pp. 6893-6904, 2011.   DOI
31 L. A. Patil, A. R. Bari, M. D. Shinde, V. Deo, and M. P. Kaushik, "Detection of dimethyl methyl phosphonate-a simulant of sarin: The highly toxic chemical warfare-using platinum activated nanocrystalline ZnO thick films", Sens. Actuators B Chem., Vol. 161, No. 1, pp. 372-380, 2012.   DOI
32 H.-C. Kim, S.-H. Hong, S.-J. Kim, and J.-H. Lee, "Effects of additives on the DMMP sensing behavior of $SnO_2$ nanoparticles synthesized by hydrothermal method" J. Sens. Sci. Technol., Vol. 20. No. 5, pp. 294-299, 2011.   DOI
33 G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, and A. Vomiero, "Synthesis and characterization of semiconducting nanowires for gas sensing", Sens. Actuators B Chem., Vol. 121, No. 1, pp. 208-213, 2007.   DOI