• Title/Summary/Keyword: Nagata ring

Search Result 20, Processing Time 0.028 seconds

THE S-FINITENESS ON QUOTIENT RINGS OF A POLYNOMIAL RING

  • LIM, JUNG WOOK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.617-622
    • /
    • 2021
  • Let R be a commutative ring with identity, R[X] the polynomial ring over R and S a multiplicative subset of R. Let U = {f ∈ R[X] | f is monic} and let N = {f ∈ R[X] | c(f) = R}. In this paper, we show that if S is an anti-Archimedean subset of R, then R is an S-Noetherian ring if and only if R[X]U is an S-Noetherian ring, if and only if R[X]N is an S-Noetherian ring. We also prove that if R is an integral domain and R[X]U is an S-principal ideal domain, then R is an S-principal ideal domain.

2-GOOD RINGS AND THEIR EXTENSIONS

  • Wang, Yao;Ren, Yanli
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1711-1723
    • /
    • 2013
  • P. V$\acute{a}$mos called a ring R 2-good if every element is the sum of two units. The ring of all $n{\times}n$ matrices over an elementary divisor ring is 2-good. A (right) self-injective von Neumann regular ring is 2-good provided it has no 2-torsion. Some of the earlier results known to us about 2-good rings (although nobody so called at those times) were due to Ehrlich, Henriksen, Fisher, Snider, Rapharl and Badawi. We continue in this paper the study of 2-good rings by several authors. We give some examples of 2-good rings and their related properties. In particular, it is shown that if R is an exchange ring with Artinian primitive factors and 2 is a unit in R, then R is 2-good. We also investigate various kinds of extensions of 2-good rings, including the polynomial extension, Nagata extension and Dorroh extension.

ON ALMOST QUASI-COHERENT RINGS AND ALMOST VON NEUMANN RINGS

  • El Alaoui, Haitham;El Maalmi, Mourad;Mouanis, Hakima
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1177-1190
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost quasi-coherent ring if for any finite set of elements α1, …, αp and a of R, there exists a positive integer m such that the ideals $\bigcap{_{i=1}^{p}}\;R{\alpha}^m_i$ and AnnRm) are finitely generated, and to be almost von Neumann regular rings if for any two elements a and b in R, there exists a positive integer n such that the ideal (αn, bn) is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties.

THE KRONECKER FUNCTION RING OF THE RING D[X]N*

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.907-913
    • /
    • 2010
  • Let D be an integrally closed domain with quotient field K, * be a star operation on D, X, Y be indeterminates over D, $N_*\;=\;\{f\;{\in}\;D[X]|\;(c_D(f))^*\;=\;D\}$ and $R\;=\;D[X]_{N_*}$. Let b be the b-operation on R, and let $*_c$ be the star operation on D defined by $I^{*_c}\;=\;(ID[X]_{N_*})^b\;{\cap}\;K$. Finally, let Kr(R, b) (resp., Kr(D, $*_c$)) be the Kronecker function ring of R (resp., D) with respect to Y (resp., X, Y). In this paper, we show that Kr(R, b) $\subseteq$ Kr(D, $*_c$) and Kr(R, b) is a kfr with respect to K(Y) and X in the notion of [2]. We also prove that Kr(R, b) = Kr(D, $*_c$) if and only if D is a $P{\ast}MD$. As a corollary, we have that if D is not a $P{\ast}MD$, then Kr(R, b) is an example of a kfr with respect to K(Y) and X but not a Kronecker function ring with respect to K(Y) and X.

FACTORIZATION IN MODULES AND SPLITTING MULTIPLICATIVELY CLOSED SUBSETS

  • Nikseresht, Ashkan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.83-99
    • /
    • 2018
  • We introduce the concept of multiplicatively closed subsets of a commutative ring R which split an R-module M and study factorization properties of elements of M with respect to such a set. Also we demonstrate how one can utilize this concept to investigate factorization properties of R and deduce some Nagata type theorems relating factorization properties of R to those of its localizations, when R is an integral domain.

ON PIECEWISE NOETHERIAN DOMAINS

  • Chang, Gyu Whan;Kim, Hwankoo;Wang, Fanggui
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.623-643
    • /
    • 2016
  • In this paper, we study piecewise Noetherian (resp., piecewise w-Noetherian) properties in several settings including flat (resp., t-flat) overrings, Nagata rings, integral domains of finite character (resp., w-finite character), pullbacks of a certain type, polynomial rings, and D + XK[X] constructions.

ON NONNIL-SFT RINGS

  • Ali Benhissi;Abdelamir Dabbabi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.663-677
    • /
    • 2023
  • The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let A be a commutative ring with unit and I be an ideal of A. We say that I is SFT if there exist an integer k ≥ 1 and a finitely generated ideal F ⊆ I of A such that xk ∈ F for every x ∈ I. The ring A is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of A) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.

ON THE FIRST GENERALIZED HILBERT COEFFICIENT AND DEPTH OF ASSOCIATED GRADED RINGS

  • Mafi, Amir;Naderi, Dler
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.407-417
    • /
    • 2020
  • Let (R, m) be a d-dimensional Cohen-Macaulay local ring with infinite residue field. Let I be an ideal of R that has analytic spread ℓ(I) = d, satisfies the Gd condition, the weak Artin-Nagata property AN-d-2 and m is not an associated prime of R/I. In this paper, we show that if j1(I) = λ(I/J) + λ[R/(Jd-1 :RI+(Jd-2 :RI+I):R m)] + 1, then I has almost minimal j-multiplicity, G(I) is Cohen-Macaulay and rJ(I) is at most 2, where J = (x1, , xd) is a general minimal reduction of I and Ji = (x1, , xi). In addition, the last theorem is in the spirit of a result of Sally who has studied the depth of associated graded rings and minimal reductions for m-primary ideals.

MODULES SATISFYING CERTAIN CHAIN CONDITIONS AND THEIR ENDOMORPHISMS

  • Wang, Fanggui;Kim, Hwankoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.549-556
    • /
    • 2015
  • In this paper, we characterize w-Noetherian modules in terms of polynomial modules and w-Nagata modules. Then it is shown that for a finite type w-module M, every w-epimorphism of M onto itself is an isomorphism. We also define and study the concepts of w-Artinian modules and w-simple modules. By using these concepts, it is shown that for a w-Artinian module M, every w-monomorphism of M onto itself is an isomorphism and that for a w-simple module M, $End_RM$ is a division ring.

ON ALMOST PSEUDO-VALUATION DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.185-193
    • /
    • 2010
  • Let D be an integral domain, and let ${\bar{D}}$ be the integral closure of D. We show that if D is an almost pseudo-valuation domain (APVD), then D is a quasi-$Pr{\ddot{u}}fer$ domain if and only if D=P is a quasi-$Pr{\ddot{u}}fer$ domain for each prime ideal P of D, if and only if ${\bar{D}}$ is a valuation domain. We also show that D(X), the Nagata ring of D, is a locally APVD if and only if D is a locally APVD and ${\bar{D}}$ is a $Pr{\ddot{u}}fer$ domain.