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FACTORIZATION IN MODULES AND SPLITTING

MULTIPLICATIVELY CLOSED SUBSETS

Ashkan Nikseresht

Abstract. We introduce the concept of multiplicatively closed subsets

of a commutative ring R which split an R-module M and study factor-
ization properties of elements of M with respect to such a set. Also we

demonstrate how one can utilize this concept to investigate factorization
properties of R and deduce some Nagata type theorems relating factor-

ization properties of R to those of its localizations, when R is an integral

domain.

1. Introduction

Throughout this paper all rings are commutative with identity and all mod-
ules are unitary. We assume that all modules are nonzero. Also R denotes a
ring and M is an R-module.

Theory of factorization in commutative rings which has a long history (see for
example [18]), still gets a lot of attention from various researchers. To see some
recent papers on this subject, the reader is referred to [1,2,5,10–15,17,19,20]. In
[6,7], D. D. Anderson and S. Valdes-Leon generalized the theory of factorization
in integral domains to commutative rings with zero divisors and to modules as
well. These concepts are further studied in [1, 2, 8, 12,20].

One of the longstanding questions in this subject is “what is the relationship
between factorization properties of R and those of its localizations?”, especially
when R is a domain (see for example [4,8,18]). In particular, many have tried to
give conditions under which, if RS is a UFD (or has other types of factorization
properties), then R is so, where S is a multiplicatively closed subset of R. For
example [16, Corollary 8.32], says that if R is a Krull domain and S is generated
by a set of primes and RS is a UFD, then R is a UFD. This type of results, are
called Nagata type theorems due to a theorem of Nagata in [18]. One can find
some other similar results and a brief review of this subject in [4, Section 3].
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On the other hand, in [19] the concept of factorization with respect to a
saturated multiplicatively closed subset (also called a divisor closed multiplica-
tive submonoid) of R is introduced. If we apply Theorem 3.9 of that paper
with S′ = M = R and assume that R is an integral domain, then we get
a Nagata type result which states that if RS is a bounded factorization do-
main and R as an R-module is an S-bounded factorization module, then R
is a bounded factorization domain (for exact definitions, see Section 2). It is
still unknown whether the similar result holds for other factorization properties
such as unique or finite factorization (see [19, Question 3.11]).

The main aim of this research is to find partial answers to the above question
and utilize them to find relations between factorization properties of R and
RS , especially when R is a domain. For this, we generalize the concept of an
splitting multiplicatively closed subset in [4] which is of key importance in the
results of that paper. Interestingly, we find out that this concept is equivalent
to another one which is completely stated in terms of factorization properties
with respect to a saturated multiplicatively closed subset.

In Section 2, we briefly review the concepts of factorization theory with
respect to a saturated multiplicatively closed subset. Then in Section 3, we
state the definition of a multiplicatively closed subset which splits M and study
basic properties of such sets. In Section 4, we present our main results, which
state how factorization properties of M and MS are related when S splits M .
Finally, in Section 5, we present an example in which M = R is an integral
domain to show how our result could be applied in order to study factorization
properties of integral domains.

In the following, by U(R) and J(R) we mean the set of units and Jacobson
radical of R, respectively. Furthermore, Z(N), where N ⊆ M , means the set
of zero divisors of N , that is, {r ∈ R | ∃0 6= m ∈ N : rm = 0}. In addition,
Ann(N) (resp. AnnM (r)) denotes the annihilator in R of N ⊆M (resp. in M
of r ∈ R). Any other undefined notation is as in [9].

2. A brief review of factorization with respect to a saturated
multiplicatively closed subset

In this section we recall the main concepts of factorization with respect to a
saturated multiplicatively closed subset of R which is needed in this paper. For
more details and several examples the reader is referred to [19]. In the sequel,
S always denotes a saturated multiplicatively closed subset of R (we let S to
contain 0, which means S = R).

We say that two elements, m and n ofM , are S-associates and writem ∼S n,
if there exist s, s′ ∈ S such that m = sn and n = s′m. They are called S-strong
associates, if m = un for some u ∈ U(R)∩S and we denote it by m ≈S n. Also
we call them S-very strong associates, denoted by m ∼=S n, when m ∼S n and
either m = n = 0 or from m = sn for some s ∈ S it follows that s ∈ U(R).
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In the case that S = R, we drop the S prefixes. In this case, our notations
coincide with that of [6, 7]. An m ∈ M is called S-primitive (resp. S-strongly
primitive, S-very strongly primitive), when m = sn for some s ∈ S, n ∈ M
implies n ∼S m (resp. n ≈S m, n ∼=S m). A nonunit element a ∈ R is called
irreducible (resp. strongly irreducible, very strongly irreducible) if a = bc for
some b, c ∈ R, implies a ∼ b or a ∼ c (resp. a ≈ b or a ≈ c, a ∼= b or a ∼= c).
Note that here by being associates in R, we mean being associates in R as an
R-module.

By an S-factorization of m ∈ M with length k, we mean an equation m =
s1 · · · skn where si’s are nonunits in S, k ∈ N ∪ {0} and n ∈ M . If moreover,
for some α ∈{irreducible, strongly irreducible, very strongly irreducible} and
β ∈{primitive, strongly primitive, very strongly primitive} si’s are α and n is
S-β, we call this an (α, β)-S-factorization. If every nonzero element of M has
an (α, β)-S-factorization, we say that M is (α, β)-S-atomic.

By an S-atomic factorization we mean an (irreducible, primitive)-S-
factorization and by an S-atomic module we mean a module which is (irre-
ducible, primitive)-S-atomic. Also we say two S-atomic factorizations m =
s1 · · · skn = t1 · · · tln′ are isomorphic, if k = l, n ∼S n′ and for a permutation
σ of {1, . . . , k}, we have si ∼ tσ(i) for all 1 ≤ i ≤ k.

We say that M is S-présimplifiable when from sm = m (s ∈ S,m ∈ M),
we can deduce that s ∈ U(R) or m = 0. By [19, Theorem 2.7(ii)], this is
equivalent to saying that the three relations ∼S , ≈S and ∼=S coincide or to
asserting that ∼=S is reflexive. In particular, all kinds of S-primitivity and
also by [19, Theorem 2.7(iv)], all types of S-factorization are equivalent for a
nonzero element of M , if M is S-présimplifiable.

We call a module M , an S-unique factorization module or S-UFM (resp. S-
finite factorization module or S-FFM ), when M is S-atomic and every nonzero
element of M has exactly one (resp. finitely many) S-atomic factorization up
to isomorphism. Also we say that M is an S-bounded factorization module or
S-BFM, if for every 0 6= m ∈ M there is an Nm ∈ N such that the length of
every S-factorization of m is at most Nm and say that M is an S-half factorial
module or S-HFM when M is S-atomic and for each element 0 6= m ∈ M the
length of all S-atomic factorizations of m are the same.

Note that in the cases that S = R or S = R = M , these concepts coincide
with the previously defined notations (see [6, 7, 20]). For example an integral
domain R is a UFD if and only if it is an R-UFM over itself. Moreover, a BFR
(bounded factorization Ring) means a ring which is a BFM over itself and
a FFD (finite factorization domain) means a domain D which is a D-BFM.
The notations UFR, FFR, BFD, HFD, . . . , have similar meanings. Also, we
sometimes say M has unique factorization (or has finite factorization or is
présimplifiable, . . . ) with respect to S instead of saying M is an S-UFM (or
S-FFM or S-présimplifiable, . . . ).

Furthermore, if E ⊆ R, we say that R has unique factorization in E when
every nonzero nonunit element in E has unique factorization (with respect to



86 A. NIKSERESHT

S = R). Similar notations are used for other factorization properties. In the
following remark, we collect some observations which will be used in the paper
without any further mention.

Remark 2.1. (i) Every S-UFM is both an S-FFM and an S-HFM by def-
inition and every S-BFM is S-présimplifiable (see remarks on page 8
of [19]).

(ii) If R has unique factorization in E, then it is half factorial and has finite
factorization in E and if R has bounded factorization in E, then it is
présimplifiable in E. Also if E is a saturated multiplicatively closed
subset or more generally, has the property that xy ∈ E leads to x ∈ E
and y ∈ E, then being half factorial or having finite factorization in E
results to having bounded factorization in E (see the second paragraph
of [19, p. 8]).

(iii) It is straightforward to see if M = R and s ∈ S, then all kinds of
S-primitivity for s are equivalent to being a unit and for elements in
S, any type of S-associativity is equivalent to the corresponding type
of R-associativity, since S is assumed to be saturated.

(iv) An element m ∈ M is S-very strongly primitive, if and only if from
m = sm′ for some s ∈ S and m′ ∈M , we can deduce s ∈ U(R).

It should be mentioned that one can define other kinds of isomorphisms
using different types of associativity and also many forms of UFM, HFM, . . .
based on the choice of the type of irreducibility, primitivity and isomorphism
(see [6, 7] for the case S = R). But in order not to make the paper too long,
we just investigate the forms defined above, mentioning that similar techniques
could be utilized to get similar results on the other forms.

3. M-splitting multiplicatively closed subsets

A main concept used in [4] to relate factorization in R and RS is the notion
of a splitting multiplicatively closed subset of R. A saturated multiplicatively
closed subset S of a domain R is called a splitting multiplicative set, when for
each x ∈ R, x = as for some a ∈ R and s ∈ S such that aR ∩ tR = atR for
all t ∈ R. An equivalent condition is that principal ideals of RS contract to
principal ideals in R [4, Lemma 1.2]. Here we will restate this condition using
factorization properties of the R-module R with respect to S and generalize it
to every R-module M . For this we need some more definitions.

Definition 3.1. By a compact S-atomic factorization of an element m ∈ M ,
we mean an equation of the form m = sn for s ∈ S and S-primitive element
n ∈ M . We say that a subset E ⊆ M is compactly S-atomic if every nonzero
element of E has a compact S-atomic factorization. If E is compactly S-atomic
and for every 0 6= m ∈ E and compact S-atomic factorizations m = sn = s′n′ of
m, we have s ∼ s′ (resp. s ∼ s′ and n ∼s n′), then E is called semi-S-factorable
(resp. S-factorable).
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Clearly every S-atomic module is compactly S-atomic but the following
example shows that the converse is not true. This example also shows that not
all S-UFM’s are factorable. Note that as usual when S = R, we drop the S
prefixes.

Example 3.2. Let R be a ring with no irreducible elements (such as the
domain D in [19, Example 2.14]) and S = R, then the R-module R is not
atomic but is compactly atomic and even factorable, since r = r1 is the only
compact atomic factorization of an r ∈ R up to associates. Also if M = R/M
for a maximal ideal M of R, then as in [19, Example 2.14], M is a UFM which
is not even semi-factorable, since for any nonunit r ∈ R \ Ann(M) and any
m ∈ M \ AnnM (r), m′ = rm = 1m′ are two compact atomic factorizations of
m′ and r � 1. Note that if we choose R to be a valuation domain of Krull
dimension 1 which is not a discrete valuation domain, then M is présimplifiable.

On the other hand, if M is an S-UFM and R is atomic in S \Ann(M), then
M is S-factorable. Because if m = sn is a compact S-atomic factorization of a
nonzero element m ∈M , then by replacing s with its atomic factorization, we
get the unique S-atomic factorization of m and hence s and n are unique up
to S-associates. Some properties of semi-S-factorable modules is stated in the
next proposition.

Proposition 3.3. Suppose that E is a semi-S-factorable subset of M .

(i) If m ∈ E is S-primitive, then m ∼=S m and m is S-very strongly
primitive.

(ii) If S ∩ Z(M) = ∅, then E is S-factorable.
(iii) If E = M , then R is présimplifiable in S \ Z(M), all kinds of ir-

reducibility are equivalent for elements in S \ Z(M) and all kinds of
associativity are equivalent for pairs of elements in S \ Z(M).

Proof. (i) It is easy to see that m ∼=S m. Now if m = sm′ for some s ∈ S,m′ ∈
M , then since m is S-primitive, there is an s′ ∈ S such that m′ = s′m, hence
m = ss′m and by m ∼=S m, it follows that s, s′ ∈ U(R) and m is S-very strongly
primitive.

(ii) Let 0 6= m = sn = s′n′ be two compact S-atomic factorizations of m.
By semi-S-factorability, s ∼ s′ and hence s = s′′s′ for some s′′ ∈ R. Since S is
saturated, s′′ ∈ S. Now s′s′′n = s′n′ and as s′ /∈ Z(M), we get s′′n = n′. Since
n′ is S-very strongly primitive by (i), we deduce that s′′ ∈ U(R) and hence
n′ ∼S n, as required.

(iii) Assume that s = s′s for some s ∈ S \ Z(M), s′ ∈ R and let m be an
S-primitive element of M . Since S is saturated, s′ ∈ S and because sm = ss′m
and s /∈ Z(M), we get m = s′m and by (i), it follows that s′ ∈ U(R). Therefore,
R is présimplifiable in S \ Z(M). Other parts of the claim follows from [6,
Theorem 2.2(2)] or [19, Theorem 2.7(iv)]. �

Part (ii) of the above proposition shows that if S ∩ Z(M) = ∅, then semi-
S-factorability and S-factorability are equivalent. Indeed, the author does not
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know an example of a semi-S-factorable module which is not S-factorable even
when S ∩ Z(M) is nonempty.

The next theorem and the remark following it, state conditions under which
S-factorization properties of M are determined by factorization properties of
elements in S \Ann(M).

Theorem 3.4. Suppose that M is semi-S-factorable, S ∩ Z(M) = ∅ and let P
be one of the following properties: being présimplifiable, having unique factor-
ization, having finite factorization, being half factorial, having bounded factor-
ization, being atomic. Then M has P with respect to S if and only if R has P

in S \Ann(M).

Proof. (⇒) Let s ∈ S \Ann(M) and m ∈M \AnnM (s). By replacing m with
an S-primitive element appearing in its compact S-atomic factorization, we can
assume m is S-primitive. First assume P = atomicity. So M is S-atomic and
sm has an S-atomic factorization sm = s1 · · · slm′ with each si irreducible and
m′, S-primitive. Since M is semi-S-factorable, we deduce that s ∼ s1 · · · sl.
By (3.3)(iii), s ∼= s1 · · · sl, that is, s = us1 · · · sl for some u ∈ U(R) and s has
an atomic factorization.

Now for the other factorization properties, note that multiplication by m
turns any factorization of s into an S-factorization of sm with the same length.
Also this operation preserves isomorphism, so factorization properties of M
pass to S \ Ann(M). A similar argument takes care of P = being présimplifi-
able.

(⇐) For P = atomicity, the result is clear. Suppose that R is présimplifiable
in S \ Ann(M), 0 6= m = sm for some m ∈ M and s ∈ S and let m = s′m′ be
a compact S-atomic factorization of m. Then s′m′ = ss′m′ are two compact
S-atomic factorizations for m and hence s′ ∼ ss′. In particular, s′ = rss′ for
some r ∈ R. Since R is présimplifiable in S, we deduce that r, s ∈ U(R), as
required.

So assume P 6= atomicity or being présimplifiable. In any of the cases, R is
présimplifiable in S \Ann(M) by (2.1)(ii) and hence M is S-présimplifiable by
the previous paragraph. Now if x = s1 · · · slm = s′1 · · · s′l′m′ are two S-atomic
factorizations of 0 6= x ∈ M , then by semi-S-factorability of M , we get two
S-atomic factorizations of s = s1 · · · sl ∼= s′1 · · · s′l′ with lengths l, l′. Thus if
P= being half factorial, then l = l′ and hence M is an S-HFM. The case of
bounded factorization is quite similar. For P = having unique factorization
or finite factorization, note that according to (3.3)(ii), m ∼S m′ in the above
factorizations of x and so if these two factorizations are non-isomorphic, then
the two factorizations of s are also non-isomorphic. So the number of non-
isomorphic factorizations of x and s are the same. �

In several parts of the proof of the above result, we did not use the assump-
tions S∩Z(M) = ∅ or semi-S-factorability of M . So we get the following remark
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that states some weaker conditions under which, some S-factorization proper-
ties of M are determined by factorization properties of elements in S\Ann(M).

Remark 3.5. Note that in the proof of (3.4)(⇒), for P= having bounded fac-
torization or being présimplifiable, we did not use any of the two assumptions.
Also for other properties, we could replace the condition “S ∩ Z(M) = ∅” with
the weaker condition “R is présimplifiable in S \Ann(M)”.

In the proof of (3.4)(⇐), for P= being présimplifiable, atomic or half factorial
or having bounded factorization, we did not need the condition “S∩Z(M) = ∅”
and for the other properties we could replace the two conditions with “M is
S-factorable.” �

Combining (3.3)(iii) with the case P = being présimplifiable of (3.4) we get:

Corollary 3.6. If M is semi-S-factorable and S ∩ Z(M) = ∅, then M is S-
présimplifiable.

Next we define the main concept of this research, namely M -splitting sets.

Definition 3.7. Let E ⊆M . We say that S splits E or S is E-splitting, when
the following two conditions hold.

(i) E is semi-S-factorable.
(ii) For every S-primitive element r ∈ R and S-primitive element m ∈M

such that 0 6= rm ∈ E, the element rm is S-primitive.

To see an example of this concept, see Section 5. The following result shows
that this definition generalizes the concept of splitting multiplicative sets as
defined in [4].

Theorem 3.8. Suppose that R is a domain. Then S is a splitting multiplicative
set (in the sense of [4]) if and only if S splits R.

Proof. (⇒) Note that since R is a domain, it is présimplifiable and all kinds
of associativity are equivalent and also all kinds of primitivity are equivalent.
Suppose that r ∈ R is S-primitive. By assumption we can write r = sr′ with
s ∈ S, r′ ∈ R such that Rr′ ∩Rt = Rtr′ for all t ∈ S. By S-primitivity, r = ur′

for some u ∈ U(R). It follows that if r ∈ R is S-primitive, then

Rr ∩Rt = Rtr for all t ∈ S.(∗)
Conversely, if r ∈ R satisfies (∗) and r = sr′ for some s ∈ S, r′ ∈ R, then
r ∈ Rr ∩ Rs = Rrs, that is, r = r′′rs for some r′′ ∈ R and hence 1 = r′′s,
s ∈ U(R) and r is S-primitive. Thus satisfying (∗) is equivalent to being S-
primitive. Consequently, according to [4, Corollary 1.4(a)], R is S-factorable.
Now assume that r1, r2 are nonzero S-primitive elements of R. By the above
remarks r1 and r2 satisfy (∗) and hence by [4, corollary 1.4(b)], r1r2 also satisfies
(∗) and hence is S-primitive, as required.

(⇐) It suffices to show that S-primitive elements of R, such as r, satisfy
(∗). Let 0 6= x ∈ Rr ∩ Rt, say x = r1r = r2t for r1, r2 ∈ R. If ri = sir

′
i is
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the compact S-atomic factorization of ri (i = 1, 2), then x = s1(r′1r) = (ts2)r′2
are compact S-atomic factorizations of x, because by assumption r′1r is S-
primitive. So by semi-S-factorability, s1 ∼ ts2 and s1 = t′ts2 for some t′ ∈ R.
Thus x = t′ts2r

′
1r ∈ Rtr and therefore, Rr ∩Rt = Rtr. �

At the end of this section we state a proposition which will be needed in the
later sections.

Proposition 3.9. Suppose that S is M -splitting, S′ is a saturated multiplica-
tively closed subset of R and S′ \Ann(M) is compactly S-atomic. Then S splits
S′ \Ann(M). If S′ = R, then S splits the R-module R/Ann(M).

Proof. Suppose r = s1r1 = s2r2 are two compact S-atomic factorizations of
r ∈ S′ \ Ann(M). There exists an S-primitive m ∈ M \ AnnM (r). Then
0 6= rm = s1(r1m) = s2(r2m) are two compact S-atomic factorizations of
rm. So s1 ∼ s2. Now assume r, r′ ∈ S′ \ Ann(M) are S-primitive and rr′ ∈
S′ \ Ann(M). If rr′ = sr′′ is a compact S-atomic factorization of rr′ and
m ∈ M \ AnnM (rr′) is S-primitive, then rr′m and r′′m are both S-primitive
by condition (ii) of definition of M -splitting saturated multiplicatively closed
subsets and hence from rr′m = sr′′m we deduce that s ∼S 1 is a unit. Therefore
rr′ is S-primitive and S splits S′ \Ann(M).

To prove the claim about N = R/Ann(M), it suffices to show that an
r ∈ R \ Ann(M) is S-primitive if and only if its image r̄ is S-primitive in N .
Assume that r ∈ R \ Ann(M) is S-primitive and r̄ = sr̄′. So r = sr′ + a
with a ∈ Ann(M). Let m ∈ M be such that rm 6= 0. Since M is compactly
S-atomic, we can assume that m is S-primitive. Also suppose that r′ = s′r′′

is a compact S-atomic factorization of r′. Then rm = sr′m = ss′(r′′m) and
it follows from S being M -splitting that ss′ ∼S 1, and s ∈ U(R). Thus r̄ is
S-primitive. The reverse implication is straightforward. �

4. Behavior of S-factorizations under localization

Throughout this section we assume that S ⊆ S′ are two saturated multi-
plicatively closed subsets of R and set T to be the saturated multiplicatively

closed subset, S−1S′ = { s
′

s | s
′ ∈ S′, s ∈ S} of RS . We investigate how factor-

ization properties of M with respect to S′ is related to factorization properties
of MS with respect to T , under the assumption that S splits M . As we will
see, in the case that S′ = R, we get some Nagata type theorems and also our
results serve as partial answers to [19, Question 3.11]. To this end, we first
study how irreducibility behaves under localization.

Proposition 4.1. Suppose that S splits E = S′ \Ann(M) and S∩Z(M) = S∩
Z(R) = ∅. Let α ∈{irreducible, strongly irreducible, very strongly irreducible}
and r = sa be the compact S-atomic factorization of r ∈ E \S. Then r̄ = r/1 ∈
RS is α if and only if a is so in R.
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Proof. Suppose that a is very strongly irreducible and r̄ = (r1/s1)(r2/s2). Note
that as r1r2 = s1s2r ∈ S′, we must have r1, r2 ∈ S′. As S ∩ Z(M) = ∅ and r /∈
Ann(M), we conclude that s1s2r /∈ Ann(M) and hence r1, r2 ∈ E. If ri = s′ir

′
i

is the compact S-atomic factorization of ri (i = 1, 2), then s1s2sa = s′1s
′
2(r′1r

′
2)

and thus r′1r
′
2 ∈ E. So r′1r

′
2 is S-primitive by (3.7)(ii). According to (3.3)(ii)

(applied with M = R), we have a ∼S r′1r′2, in particular, a = tr′1r
′
2 for some

t ∈ S. Because a is very strongly irreducible, one of r′i’s, say r′1 is a unit. Thus
r1/s1 = s′1r

′
1/s1 ∈ U(RS) and as r̄ is not a unit of RS (since r /∈ S), it is very

strongly irreducible. Similar arguments show that if a is (strongly) irreducible,
then r̄ is so.

Conversely, suppose that r̄ is very strongly irreducible and a = bc. Then
b, c ∈ E. So they have compact S-atomic factorizations b = s1b

′ and c = s2c
′

with b′, c′ ∈ E. Since S splits E and a = s1s2(b′c′) is a compact S-atomic
factorization of the S-primitive element a we deduce that s1, s2 ∈ U(R) and
hence b, c are both S-primitive. On the other hand, r̄ = (s̄b̄)c̄ and it follows
from very strongly irreducibility of r̄ that for example b̄ ∈ U(RS). This means
that b ∈ S and since b is S-primitive, we conclude that b ∈ U(R). Therefore, a
is very strongly irreducible.

Now assume that r̄ is strongly irreducible and a = bc. As in the above
paragraph we see that b, c are S-primitive and r̄ = (s̄b̄)c̄. So by strongly
irreducibility of r̄ it follows that for example r̄ ≈ b̄, that is, r̄ = (s1/s2)b̄ for
some s1, s2 ∈ S. So s2sa = s1b and by (3.3)(ii) a ∼S b. But (3.3)(i) implies
that a ∼=S b and hence according to [19, Theorem 2.7(i)], a ≈ b, as required.
The case α = irreducible is similar. �

Next we consider how S′-primitivity behaves under localization. Recall that
throughout this section S ⊆ S′ are saturated multiplicatively closed subsets
and T = S−1S′.

Proposition 4.2. Suppose S splits M , S ∩ Z(M) = ∅ and S′ \ Ann(M) is
compactly S-atomic. Let 0 6= m ∈ M , β ∈{primitive, strongly primitive, very
strongly primitive} and assume that m = sn is the compact S-atomic factor-
ization of m. Then m/1 is T -β in the RS-module MS if and only if n is S′-β
in M .

Proof. As S ∩ Z(M) = ∅, we have M ⊆ MS , so we write m instead of m/1.
Assume that m is T -β and n = s′n′ for s′ ∈ S′, n′ ∈ M . If n′ = s1n

′′

and s′ = s2s
′′ are compact S-atomic factorizations of n′ and s′, then we get

n = s1s2(s′′n′′) and as S splits M , we deduce that s1s2 ∼ 1. This means that
s1, s2 ∈ U(R) and both n′ and s′ are S-primitive. Also m = ss′n′.

Consider the case that β = primitive. Then we get m ∼T n′, that is,
n′ = (s′0/s0)m for s′0 ∈ S′, s0 ∈ S. This leads to s0n

′ = s′0sn = sv(s′1n), where
s′0 = vs′1 is a compact S-atomic factorization of s′0 with v ∈ S. Consequently
we get n′ ∼S s′1n and n′ = us′1n for some u ∈ S. As us′1 ∈ S′, we conclude

that n′ ∼S′
n and hence n is S′-primitive.
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Now consider the case that β = strongly primitive. Then we get m ≈T n′,
whence n′ = (s′0/s0)m with both s0, s

′
0 ∈ S. Thus s0n = s′0sn and as S splits

M , n ∼S n′ which implies n ∼=S n′ by (3.3)(i) and hence by [19, Theorem

2.7(i)], n ≈S′
n′, as required. We leave the similar proof of the case β = very

strongly primitive to the reader.
Conversely, assume that n is S′-primitive and m = tm′ for some t ∈ T and

m′ ∈MS . One can readily check that if x = y/v for y ∈M,v ∈ S and m ∼T y
(resp. m ≈T y, m ∼=T y), then m ∼T x (resp. m ≈T x, m ∼=T x). Therefore,
we can assume that m′ ∈ M and also t = u′/u for u′ ∈ S′ and u ∈ S. If
u′ = u1u

′′ and m′ = u2m
′′ are compact S-atomic factorizations of u′ and m′

with u1, u2 ∈ S, then it follows that usn = um = u′m′ = u1u2(u′′m′′) and
hence n ∼S u′′m′′. In particular, n = s0u

′′m′′ for some s0 ∈ S. Note that u′′

and hence s0u
′′ are in S′, so as n is S′-primitive, we deduce that n ∼S′

m′′,
hence m′′ = s′n for some s′ ∈ S′. Thus sm′ = su2m

′′ = su2s
′n = u2s

′m and
m′ = (u2s

′/s)m. Since u2s
′/s ∈ T , we see that m ∼T m′ which shows that m

is T -primitive. The proof for (very) strongly primitivity is similar. �

To see how S′-atomicity of M and T -atomicity of MS are related, we need
a lemma.

Lemma 4.3. Suppose that s′ ∈ S′ \ (S ∪ Ann(M)) and 0 6= m ∈M such that
s′ is α and m is S′-β where α ∈{irreducible, strongly irreducible, very strongly
irreducible}, β ∈{primitive, strongly primitive, very strongly primitive}. If M
is semi-S-factorable, then m is S-primitive. If S splits M and S′ \Ann(M) is
compactly S-atomic, then s′ is S-primitive.

Proof. If m = sm′ is a compact S-atomic factorization of m, then by S′-
primitivity, m ∼S′

m′. So m′ = tm for some t ∈ S′. Thus m′ = s(tm′) and
since m′ is S-very strongly primitive by (3.3), we deduce that s is a unit and
hence m is S-primitive.

Now assume that S splits M , S′ \ Ann(M) is compactly S-atomic and let
s′ = s1a be a compact S-atomic factorization of s′. Since s′ is irreducible,
either s′ ∼ s1 or s′ ∼ a. In the former case, it follows that s1 = rs′ and as
S is saturated, we get the contradiction s′ ∈ S. So s′ ∼ a and a = rs′ for
some r ∈ R. Note that since s′ = s1s

′r and S′ is saturated, we must have
r ∈ S′. If r = s2r

′ is a compact S-atomic factorization of r, then a = s1s2(r′a)
and thus s1s2 ∼ 1, for both sides are compact S-atomic factorizations in E =
S′ \ Ann(M) and S splits E by (3.9). This means that s1 ∈ U(R) and the
result follows. �

Theorem 4.4. Suppose that S is M -splitting, S′ \ Ann(M) is compactly S-
atomic, α ∈{irreducible, strongly irreducible, very strongly irreducible} and
β ∈{primitive, strongly primitive, very strongly primitive}. Then the following
hold.

(i) If M is (α, β)-S′-atomic, then M is (α, very strongly primitive)-S-
atomic.
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(ii) Assume that S∩Z(M) = S∩Z(R) = ∅. Then M is (α, β)-S′-atomic if
and only if M is (α, primitive)-S-atomic and MS is (α, β)-T -atomic.

Proof. (i) If m = s1 · · · sks′1 · · · s′k′m′ is an (α, β)-S′-atomic factorization of
0 6= m ∈ M where si ∈ S and s′i ∈ S′ \ S, then by (4.3), s′i and m′ are S-
primitive and hence their product 0 6= m′′ = s′1 · · · s′k′m′ is also S-primitive
and by (3.3)(i), indeed S-very strongly primitive. Therefore m = s1 · · · skm′′
is an (α, very strongly primitive)-S-atomic factorization of m.

(ii) (⇒) It follows from (i) that M is (α, primitive)-S-atomic. Suppose
m = s1 · · · sks′1 · · · s′k′m′ is an (α, β)-S′-atomic factorization of 0 6= m ∈ M
where si ∈ S and s′i ∈ S′ \ S, then by (4.3), (4.2) and (4.1), s′i/1 is α
and m′/1 is T -β. Hence we get the (α, β)-T -atomic factorization m/1 =
(s′1/1) · · · (s′k′/1)(um′/1), where u = (s1 · · · sk)/1 ∈ U(RS). So MS is (α, β)-
T -atomic.

(⇐) Let 0 6= m ∈ M . Then by assumption m = s1 · · · skn where si ∈ S
are α and n is S-primitive. Assume n/1 = (s′1/u1) · · · (s′k′/uk′)(m′/uk′+1) is
an (α, β)-T-atomic factorization where s′i ∈ S′ \ S, ui ∈ S and let s′i = vis

′′
i

and m′ = vm′′ be compact S-atomic factorizations of s′i and m′, respectively.
Then as s′i/ui and hence s′i/1 are α it follows from (4.1) that s′′i is α. Similarly
by (4.2), m′′ is S′-β. Since all s′′i and m′′ are S-primitive and S splits M , n′ =
s′′1 · · · s′′k′m′′ is S-primitive. Now from the above factorization of n/1 it follows
that un = u′n′ for some u, u′ ∈ S and since n and n′ are both S-primitive and
by (3.3)(ii), n ∼S n′ and hence n ∼=S n′ according to (3.3)(i). This implies that
n = an′ with a ∈ U(R). We conclude that m = s1 · · · sks′′1 · · · s′′k′(am′′) is an
(α, β)-S′-atomic factorization of m. �

To establish a version of the above theorem for other factorization properties
we need:

Lemma 4.5. Suppose that M is semi-S-factorable and S ∩ Z(M) = ∅. If M
is an S′-UFM, S′-HFM or S′-FFM, then M is an S-BFM. Also if M is an
S-BFM, then E = R \Ann(M) is compactly S-atomic.

Proof. Let 0 6= m ∈ M . In either of the cases, the possible lengths of an S′-
atomic factorization of m are finite and hence there is an upper bound Nm on
these lengths. Now let m = s1 · · · slm′ where si ∈ S \ U(R). By replacing m′

with one of its compact S-atomic factorizations, the length of this factorization
does not decrease. Therefore, we can assume that m′ is S-primitive.

Let s1m
′ = s′1,1 · · · s′1,k1m

′
1 be an S′-atomic factorization of s1m

′. If k1 = 0,

then as m′1 is S-very strongly primitive by (4.3) and (3.3)(i), we must have s1 ∈
U(R) against our assumption. So k1 ≥ 1. Similarly, we can find S′-atomic fac-
torizations sim

′
i−1 = s′i,1 · · · s′i,kim

′
i for each 2 ≤ i ≤ l with ki ≥ 1 for all i. Con-

sequently, we get an S′-atomic factorization m = s′1,1 · · · s′1,k1 · · · s
′
l,1 · · · s′l,klm

′
l.

Hence l ≤
∑l
i=1 ki ≤ Nm and M is an S-BFM.

Now assume that r ∈ E and M is an S-BFM. Then there is an S-primitive
element m ∈ M \ AnnM (r). If r = s1 · · · slr′ with si ∈ S \ U(R), then rm =
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s1 · · · sl(r′m) and hence l ≤ Nrm. If l is the largest possible length of S-
factorizations of r, then r′ is S-very strongly primitive and the result follows.

�

Note that although under the conditions of the first part of the above lemma,
M is an S-BFM, but it need not be an S′-BFM as demonstrated in [19, Example
2.14] with S′ = D and S = U(D).

Theorem 4.6. Suppose that M is semi-S-factorable, S ∩ Z(M) = ∅ and let P
be one of the following properties: being présimplifiable, having unique factor-
ization, having finite factorization, being half factorial, having bounded factor-
ization. If M has P with respect to S′ then it has P with respect to S.

Proof. For the case that P = being présimplifiable or having bounded factor-
ization, the result is [19, Theorem 3.8] (and does not need semi-S-factorability
or M -regularity). For other cases, note that by the previous lemma, M is an
S-BFM and hence S-atomic and therefore R is atomic in E = S′ \ Ann(M)
by (3.4). Let s ∈ E and m ∈ M \ AnnM (s). By replacing m with an S′-
primitive element appearing in an S′-atomic factorization of m, we can assume
that m is S′-primitive. Now if s = s1 · · · sk is an atomic factorization, then
sm = s1 · · · skm is an S′-atomic factorization of sm with the same length and
two factorizations of sm arising in this way are isomorphic if and only if the
two factorizations of s are isomorphic. Consequently, R has P in E and hence
by (3.4), M has P with respect to S. �

Another condition under which, an S′-UFM is an S-UFM is presented in
[19, Theorem 3.8 & Notation 3.5].

Lemma 4.7. Assume that S splits M , S′ \ Ann(M) is compactly S-atomic
and S ∩ Z(M) = S ∩ Z(R) = ∅. Let y1, y2 ∈ S′ \ (S ∪ Ann(M)) be irreducible
and 0 6= m1,m2 ∈ M be S′-primitive. Then y1/1 ∼ y2/1 in RS if and only if

y1 ∼ y2 in R and m1/1 ∼T m2/1 if and only if m1 ∼S
′
m2.

Proof. (⇐) Trivial. (⇒) Suppose y1/1 = (r/s)(y2/1). Then sy1 = ry2 =
s0(r′y2), where r = s0r

′ is a compact S-atomic factorization of r. Hence by
(4.3), (3.9) and (3.3)(ii), y1 ∼S r′y2 and y1 ∈ Ry2. Similarly y2 ∈ Ry1 and
y1 ∼ y2. The proof of the other statement is similar. �

Theorem 4.8. Suppose that S splits M , S ∩ Z(M) = S ∩ Z(R) = ∅ and let
P be one of the following properties: having unique factorization, having finite
factorization, being half factorial, having bounded factorization. Then M has
P with respect to S′ if and only if M has P with respect to S and MS has P

with respect to T . A similar statement holds for P = being présimplifiable, if
we further assume that S′ \Ann(M) is compactly S-atomic.

Proof. (⇒) According to (4.6), we just need to show thatMS has P with respect
to T . Note that by (4.5), in all cases S′ \Ann(M) is compactly S-atomic. First
assume that P = being présimplifiable and m/s0 = (s′/s1)(m/s0) for some
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s′ ∈ S′, s1, s0 ∈ S, 0 6= m ∈ M . If m = v0m
′ and s′ = v1s

′′ are compact
S-atomic factorizations of m and s′ with vi ∈ S, then s1m

′ = v1(s′′m′) and
as S splits M and by (3.3), it follows that m′ ∼=S s′′m′. Then m′ = (us′′)m′

for some u ∈ U(R) and since M is S′-présimplifiable and s′′ ∈ S′, we deduce
s′′ ∈ U(R) and s′ ∈ S, as required.

For P 6= being présimplifiable, since M is S′-atomic, it follows form (4.4)
that MS is T -atomic. Let 0 6= m ∈ M be S-primitive. If (m/1) =
(s′1/s1) · · · (s′k/sk)(m′/1) is any T -factorization of m/1 and s′i = vis

′′
i and

m′ = vm′′ are compact S-atomic factorization of s′i and m′, then s1 · · · skm =
v1 · · · vk(s′′1 · · · s′′km′′) which by (3.3)(ii) implies that m ∼=S s′′1 · · · s′′km′′. Also
according to (4.1) and (4.2), s′′i is irreducible if and only if s′i/si is so and m′′

is S′-primitive if and only if m′/1 is so. Therefore, if for example the number
of S′-atomic factorizations of m is finite, then so is the number of T -atomic
factorizations of m/1. Similarly other S′-factorization properties of m pass to
T -factorization properties of m/1. Noting that each 0 6= x ∈ MS is a unit
multiple of some m/1 where 0 6= m ∈M is S-primitive, the result is concluded.

(⇐) The cases P = being présimplifiable or having bounded factorization is
[19, Theorem 3.9] (with much less assumptions). So assume that P = having
unique factorization or finite factorization or being half factorial. Note that
by (4.5) applied with S′ = S, we see that M is S-BFM and R \ Ann(M) is
compact S-atomic. Thus it follows (4.4)(ii), that M is S′-atomic. We prove the
result for P = having finite factorization and the other cases follow similarly.

Let m = s1 · · · sks′1 · · · s′k′m′ be an S′-atomic factorization of 0 6= m ∈ M
with si ∈ S and s′i ∈ S′ \ S. Then by (4.3), each s′i, m

′ and hence their
product m′′ = s′1 · · · s′k′m′ are S-primitive. Consequently, m = s1 · · · skm′′ is S-
isomorphic (and thus S′-isomorphic) to one of the finite S-atomic factorizations
of m. So if we show S-primitive elements of M have finitely many S′-atomic
factorizations, we are done. Thus we assume m is S-primitive and k = 0. Then
m/1 = (s′1/1) · · · (s′k′/1)(m′/1) is a T -atomic factorization of m/1 by (4.1)
and (4.2). Therefore, each S′-atomic factorization of m leads to a T -atomic
factorization of m/1 and according to (4.7) if two such T -atomic factorizations
of m/1 are T -isomorphic, then the original S′-atomic factorizations of m are
S′-isomorphic. Consequently, as m/1 has finitely many T -atomic factorizations
up to T -isomorphisms, m also has finitely many S′-atomic factorizations up to
S′-isomorphism, as claimed. �

It should be mentioned that (⇐) of the above theorem, is a partial answer
to [19, Question 3.11]. Summing up Theorems (4.4)(ii), (4.8) and (3.4), we get:

Corollary 4.9. Let S ⊆ S′ be two saturated multiplicatively closed subsets of
R and set T = S−1S′. Suppose that S splits M and S ∩Z(M) = S ∩Z(R) = ∅.
For P ∈ {having unique factorization, having finite factorization, being half
factorial, having bounded factorization}, the following are equivalent.

(i) M has P with respect to S′.
(ii) M has P with respect to S and MS has P with respect to T .
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(iii) R has P in S \Ann(M) and MS has P with respect to T .

If we further assume that S′ \ Ann(M) is compactly S-atomic, then the above
conditions are also equivalent for P = being présimplifiable or atomic.

If we set S′ = R in the above corollary, we get some Nagata type theorems. If
we further assume that M = R and R is an integral domain, then this corollary
implies [4, Theorems 3.1 & 3.3] (except for ACCP and idf-domain, which are
not investigated in this research). Because if S is generated by primes, then
every element of S has a unique factorization as a product of primes and hence
irreducibles, that is, R has unique factorization (and whence has finite and
bounded factorization and is présimplifiable, atomic and half factorial) in S.
Indeed, even when M = S′ = R and R is a domain, this corollary is slightly
stronger than [4, Theorem 3.1], since in our results S need not be generated by
primes. An example in which S is not generated by primes is presented in the
next section.

5. An application

We present an example which shows how our main result (4.9), could be
applied in the case that M = S′ = R and R is an integral domain, the clas-
sical and most important situation in the factorization theory. Note that in
this case, R is présimplifiable and hence all types of associativity (resp. irre-
ducibility, primitivity) are equivalent to each other. Also if S splits R, then R is
compactly S-atomic and hence (4.9) could be applied for all P ∈ {having unique
factorization, having finite factorization, being half factorial, having bounded
factorization, being atomic}. First let’s state the setting of our example as a
notation.

Notation 5.1. In this section, we assume that M = S′ = R = A + XB[X]
where A ⊆ B are integral domains and S = (U(B)∩A)∪ {uXn|u ∈ U(B), n ∈
N}. Also we set S0 = U(B) ∩A and denote the quotient field of A by K.

It is easy to see that S is a saturated multiplicatively closed subset of R,
indeed, it is the saturated multiplicatively closed subset generated by X. Also
if B 6= A and b ∈ B \A, then (bX)2 ∈ RX, while bX /∈ RX. So X is not prime
and S is not generated by primes if A 6= B.

Theorem 5.2. The set S splits R if and only if all of the following conditions
hold:

(i) S0 splits A;
(ii) for every b ∈ B there are u ∈ U(B) and a ∈ A such that b = ua;

(iii) U(B) ∩K ⊆ AS0
.

In particular, if either B is a filed or S0 is any A-splitting saturated multiplica-
tively closed subset of A and B = AS0

, then S splits R.

Proof. (⇒) Note that if a ∈ A, and a = sf for some s ∈ S, f ∈ R, then s ∈ S0

and f ∈ A. Thus a is S-primitive if and only if it is S0-primitive and so (i)
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follows as S splits A. To see (ii), let b ∈ B. If bX is S-primitive, then b2X2

should be S-primitive by (ii) of Definition (3.7). But b2X2 = (b2X)X is an
S-factorization of b2X2, a contradiction. So bX is not S-primitive. Thus if its
compact S-atomic factorization is bX = sf , with s ∈ S and S-primitive f ∈ R,
then deg f = 0. Whence f ∈ A and s = uX for some u ∈ B and (ii) follows
with a = f .

Now let u ∈ U(B) and u = a/a′ for some 0 6= a, a′ ∈ A. Assume that a =
s0a0 and a′ = s′0a

′
0 are compact S-atomic (hence S0-atomic) factorizations of a

and a′. Then ((us′0/s0)X)a′0 = (X)a0 are two compact S-atomic factorizations
of a0X, therefore by uniqueness of such factorizations we have X ∼= (us′0/s0)X,
that is, v = us′0/s0 ∈ U(R) = U(A). Consequently, u = vs0/s

′
0 ∈ AS0

.
(⇐) Suppose that f =

∑n
i=k biX

i ∈ R with k ≤ n and bk 6= 0. If k = 0, then
b0 ∈ A has a compact S0-atomic factorization b0 = sa where s ∈ U(B) ∩ A.
Therefore f = s(a +

∑n
i=2(bi/s)X

i) is a compact S-atomic factorization of f
(note that a +

∑n
i=2(bi/s)X

i is S-primitive, since a is so). If k > 0, then by
(ii), there are u ∈ U(B) and a0 ∈ A such that b = ua0. If a0 = s0a is the
compact S0-atomic factorization of a0, then set s = us0 ∈ U(B). Thus we
get the compact S-factorization f = (sXk)(a+

∑n
i=k+1(bi/s)X

i−k). Thus R is
compactly S-atomic and f is S-primitive if and only if b0 = f(0) is nonzero and
S0-primitive in A. In particular, if f, g ∈ R are S-primitive, then 0 6= (fg)(0)
is S0-primitive in A by (i) and fg is S-primitive.

It remains to show the uniqueness of compact S-factorizations of f . Assume
that f = u1X

k1f1 and u2X
k2f2 are two S-atomic factorizations of f where

f1 and f2 are S-primitive and u1, u2 ∈ U(B). Therefore, by the previous
paragraph, a1 = f1(0) 6= 0, a2 = f2(0) 6= 0 are S0-primitive and hence k1 =
k2 = k. Also u1a1 = u2a2 and hence u = u1/u2 = a2/a1 ∈ U(B) ∩K ⊆ AS0 ,
by (iii). Consequently, u = a/s0 for some a ∈ A and s0 ∈ S0. If a = s′0a

′ is
the compact S0-atomic factorization of a, then s0a2 = aa1 = s′0(a′a1). Since
both a2 and a′a1 are S0-primitive, we must have a2 ∼S0 a′a1 and in particular,
a2 ∈ Aa1. Similarly a1 ∈ Aa2, hence Aa1 = Aa2 and as A is a domain, a1 = va2
for some v ∈ U(A). It follows that u2 = vu1 and hence u1X

k ∼S u2X
k, as

required. �

Thus in particular, we can apply (4.9) with M = S′ = R, in the case A = B.
Since in this case X is prime, R = B[X] has unique factorization in S and
hence we get

Corollary 5.3. If B is an integral domain, then B[X] is atomic (resp. a BFD,
a FFD, a HFD, a UFD) if and only if B[X,X−1] is so.

Theorem 5.4. Using Notation 5.1 and assuming that the conditions (i)–(iii)
of (5.2) hold, then we have

(i) R is atomic (resp. a BFD, a HFD) if and only if U(B) ∩ A = U(A)
and B[X] is atomic (resp. a BFD, a HFD).

(ii) R is a FFD if and only if |U(B)
U(A) | <∞ and B[X] is a FFD.
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(iii) R is a UFD if and only if |U(B)
U(A) | = 1 and B[X] is a UFD.

Proof. In all cases, by applying (4.9), we deduce that R has the desired property
P if and only if R has P in S and RS = B[X,X−1] has P. Thus according to
(5.3), we just need to show that in each case, R has P in S if and only if the
stated condition on U(B) and U(A) is satisfied.

(i) Assume R is atomic in S. Then X has decomposition X = a1 · · · an(uX)
with irreducible ai ∈ A and u ∈ U(B) such that uX is irreducible in R. If
a ∈ U(B) ∩ A, then uX = ((u/a)X)a and as uX is irreducible, it follows that
a ∈ U(R) = U(A). Conversely, if U(B) ∩A = U(A), then uX is irreducible for
each u ∈ U(B) and hence f = uXn = (uX)Xn−1 is an atomic factorization
of f ∈ S \ U(R). Also in any atomic factorization of f exactly n terms of the
form vX appear where v ∈ U(B). Since irreducible elements of S are exactly
those of the form vX for v ∈ U(B), it follows that any atomic factorization of
f has length n and R is half factorial and has bounded factorization in S.

(ii) If R has finite factorization in S, then it is atomic in S and hence
by (i), U(B) ∩ A = U(A) and the irreducible elements in S are of the form
vX for v ∈ U(B). Note that vX ∼= v′X if and only if v ∈ U(A)v′ if and
only if the image of v, v′ in the quotient group U(B)/U(A) are equal. So if
v1, v2, . . . are infinite elements of U(B), such that viU(A) 6= vjU(A) for each
i 6= j, then we can find an infinite set of non-isomorphic atomic factorizations
of X2 = (v1X)(v−11 X) = (v2X)(v−12 X) = · · · .

Conversely, suppose that n = |U(B)/U(A)| < ∞. If a ∈ U(B) ∩ A, then
an ∈ U(A) and hence a ∈ U(A). Therefore, by (i) R is atomic and half factorial
in S and irreducibles of R in S are of the form vX with v ∈ U(B). Since every
atomic factorization of uXk ∈ S has the same length k, to show that it has
finitely many factorizations it suffices to show that it has only finitely many
non-associate irreducible divisors. But there are n non-associate irreducible
elements in S, because vX ∼= v′X if and only if vU(A) = v′U(A), and we are
done. The proof of (iii) is similar. �

This theorem generalizes the following previously known result (for example,
it is an immediate consequence of the propositions considering the D + M
construction in [3]) which follows from (5.4) in the case that B is a field.

Corollary 5.5. Assume that B is a field. Then R is atomic if and only if R
is a BFD if and only if R is a HFD if and only if A is a field. Also R is a
FFD (resp. UFD) if and only if A is a field and |B∗/A∗| <∞ (resp. B = A).
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