Browse > Article
http://dx.doi.org/10.4134/BKMS.b210681

ON ALMOST QUASI-COHERENT RINGS AND ALMOST VON NEUMANN RINGS  

El Alaoui, Haitham (Faculty of Sciences Dhar El Mahraz Sidi Mohamed Ben Abdellah University)
El Maalmi, Mourad (Faculty of Sciences Dhar El Mahraz Sidi Mohamed Ben Abdellah University)
Mouanis, Hakima (Faculty of Sciences Dhar El Mahraz Sidi Mohamed Ben Abdellah University)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.5, 2022 , pp. 1177-1190 More about this Journal
Abstract
Let R be a commutative ring with identity. We call the ring R to be an almost quasi-coherent ring if for any finite set of elements α1, …, αp and a of R, there exists a positive integer m such that the ideals $\bigcap{_{i=1}^{p}}\;R{\alpha}^m_i$ and AnnRm) are finitely generated, and to be almost von Neumann regular rings if for any two elements a and b in R, there exists a positive integer n such that the ideal (αn, bn) is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties.
Keywords
Almost quasi-coherent rings; almost von Neumann regular rings; trivial rings extension; amalgamated algebra along an ideal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. S. Pierce, Modules over commutative regular rings, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, RI, 1967.
2 M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326   DOI
3 M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1   DOI
4 D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3   DOI
5 M. Auslander, On regular group rings, Proc. Amer. Math. Soc. 8 (1957), 658-664. https://doi.org/10.2307/2033274   DOI
6 M. B. Boisen, Jr., and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math. 29 (1977), no. 4, 722-737. https://doi.org/10.4153/CJM-1977-076-6   DOI
7 V. P. Camillo, Semihereditary polynomial rings, Proc. Amer. Math. Soc. 45 (1974), 173-174. https://doi.org/10.2307/2040056   DOI
8 M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023   DOI
9 R. Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972.
10 M. Harada, Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 17-27.
11 S.-E. Kabbaj, Matlis semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroccan Journal of Algebra and Geometry with Applications, In press.
12 D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq. 19 (2012), Special Issue no. 1, 1017-1040. https://doi.org/10.1142/S1005386712000831   DOI
13 V. Barucci, D. F. Anderson, and D. E. Dobbs, Coherent Mori domains and the principal ideal theorem, Comm. Algebra 15 (1987), no. 6, 1119-1156. https://doi.org/10.1080/00927878708823460   DOI
14 S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. https://doi.org/10.2307/1993382   DOI
15 M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 (2015), no. 1, 41-49.
16 M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
17 M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008   DOI
18 D. E. Dobbs, On going down for simple overrings, Proc. Amer. Math. Soc. 39 (1973), 515-519. https://doi.org/10.2307/2039585   DOI
19 S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570   DOI
20 S. Glaz, Finite conductor rings, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2833-2843. https://doi.org/10.1090/S0002-9939-00-05882-2   DOI
21 J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
22 K. A. Ismaili and N. Mahdou, Finite conductor property in amalgamated algebra along an ideal, J. Taibah Univ. Sci. 9 (2015), 332-339.   DOI
23 S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953. https://doi.org/10.1081/AGB200027791   DOI
24 I. Kaplansky, Commutative rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
25 N. Mahdou, On 2-von Neumann regular rings, Comm. Algebra 33 (2005), no. 10, 3489-3496. https://doi.org/10.1080/00927870500242991   DOI
26 P. J. McCarthy, The ring of polynomial over a von Neumann regular ring, Proc. Amer. Math. Soc. 39 (1973), 253-254. https://doi.org/10.2307/2039626   DOI
27 M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York, 1962.
28 A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1958/59), 372-380. https://doi.org/10.1007/BF01558598   DOI
29 J. von Neumann, On regular rings, Proc. Nat Acad. Sci. U.S.A. 22 (1936), 707-713.   DOI
30 M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), no. 1-3, 29-62. https://doi.org/10.1007/BF01168346   DOI