Browse > Article
http://dx.doi.org/10.4134/JKMS.j150213

ON PIECEWISE NOETHERIAN DOMAINS  

Chang, Gyu Whan (Department of Mathematics Education Incheon National University)
Kim, Hwankoo (School of Computer and Information Engineering Hoseo University)
Wang, Fanggui (College of Mathematics and Software Science Sichuan Normal University)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.3, 2016 , pp. 623-643 More about this Journal
Abstract
In this paper, we study piecewise Noetherian (resp., piecewise w-Noetherian) properties in several settings including flat (resp., t-flat) overrings, Nagata rings, integral domains of finite character (resp., w-finite character), pullbacks of a certain type, polynomial rings, and D + XK[X] constructions.
Keywords
piecewise Noetherian ring; piecewise w-Noetherian domain; Noetherian spectrum; strong Mori spectrum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. D. Anderson, G. W. Chang, and M. Zafrullah, Integral domains of finite t-character, J. Algebra 396 (2013), 169-183.   DOI
2 D. D. Anderson, J. Matijevic, and W. Nichols, The Krull intersection Theorem. II, Pacific J. Math. 66 (1976), no. 1, 15-22.   DOI
3 J. T. Arnold and J. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra 18 (1971), 254-264.   DOI
4 J. A. Beachy andW. D.Weakley, Piecewise Noetherian rings, Comm. Algebra 12 (1984), no. 21-22, 2679-2706.   DOI
5 J. A. Beachy andW. D.Weakley, A note on prime ideals which test injectivity, Comm. Algebra 15 (1987), no. 3, 471-478.   DOI
6 A. Benhissi, CCA pour les ideaux radicaux et divisoriels, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 44(92) (2001), no. 2, 119-135.
7 G. W. Chang, Strong Mori domains and the ring $D[X]_{N_v}$, J. Pure Appl. Algebra 197 (2005), no. 1-3, 293-304.   DOI
8 D. Costa, J. Mott, and M. Zafrullah, The construction D + $XD_S$[X], J. Algebra 53 (1978), no. 2, 423-439.   DOI
9 M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
10 D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852.   DOI
11 S. El Baghdadi and S. Gabelli, Ring-theoretic properties of PvMDs, Comm. Algebra 35 (2007), no. 5, 1607-1625.   DOI
12 S. El Baghdadi, H. Kim, and F. Wang, A note on generalized Krull domains, J. Algebra Appl. 13 (2014), no. 7, 1450029, 18 pp.
13 A. Facchini, Generalized Dedekind domains and their injective modules, J. Pure Appl. Algebra 94 (1994), no. 2, 159-173.   DOI
14 M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), no. 3, 803-835.   DOI
15 R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
16 H. Kim, T. I. Kwon, and M. S. Rhee, A note on zero divisors in w-Noetherian-like rings, Bull. Korean Math. Soc. 51 (2014), no. 6, 1851-1861.   DOI
17 E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), no. 8, 1955-1969.   DOI
18 B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), no. 1, 151-170.   DOI
19 H. Kim and T. I. Kwon, Integral domains which are t-locally Noetherian, J. Chungcheong Math. Soc. 24 (2011), 843-848.
20 D. J. Kwak and Y. S. Park, On t-flat overrings, Chinese J. Math. 23 (1995), no. 1, 17-24.
21 C. P. Lu, Modules satisfying ACC on a certain type of colons, Pacific J. Math. 131 (1988), no. 2, 303-318.   DOI
22 C. P. Lu, Modules and rings satisfying (accr), Proc. Amer. Math. Soc. 117 (1993), no. 1, 5-10.   DOI
23 J. Ohm and R. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631-639.   DOI
24 M. H. Park, Power series rings over strong Mori domains, J. Algebra 270 (2003), no. 1, 361-368.   DOI
25 A. C. Pearson, Noncommutative Piecewise Noetherian Rings, Ph. D. thesis, Northern Illinois University, 2011.
26 M. Tamekkante, K. Louartiti, and M. Chhiti, Chain conditions in amalgamated algebras along an ideal, Arab. J. Math. (Springer) 2 (2013), no. 4, 403-408.   DOI
27 F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Al-gebra 25 (1997), no. 4, 1285-1306.   DOI