• Title/Summary/Keyword: NPN BJT

Search Result 16, Processing Time 0.021 seconds

The Algorithm for Calculating the Base-Collector Breakdown Voltage of NPN BJT Using the Solution of the Poisson′s Equation (포아송 방정식의 해를 이용한 NPN BJT의 베이스- 컬렉터간 역방향 항복전압 추출 알고리즘)

  • 이은구;김태한;김철성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.384-392
    • /
    • 2003
  • The algorithm for calculating the base-collector breakdown voltage of NPN BJT for integrated circuits is proposed. The method of three-dimensional mesh generation to minimize the time required for device simulation is presented and the method for calculating the breakdown voltage using solutions of the Poisson´s equation is presented. To verify the proposed method, the breakdown voltage between base and collector of NPN BJT using 20V process and 30V process is compared with the measured data. The breakdown voltage from the proposed method of NPN BJT using 20V process shows an averaged relative error of 8.0% compared with the measured data and the breakdown voltage of NPN BJT using 30V process shows an averaged relative error of 4.3% compared with the measured data.

The Modeling of the Transistor Saturation Current of the BJT for Integrated Circuits Considering the Base (베이스 영역의 불순물 분포를 고려한 집적회로용 BJT의 역포화전류 모델링)

  • 이은구;김태한;김철성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.13-20
    • /
    • 2003
  • The model of the transistor saturation current of the BJT for integrated circuits based upon the semiconductor physics is proposed. The method for calculating the doping profile in the base region using process conditions is presented and the method for calculating the base Gummel number of lateral PNP BJT and vertical NPN BJT is proposed. The transistor saturation currents of NPN BJT using 20V and 30V process conditions obtained from the proposed method show an average relative error of 6.7% compared with the measured data and the transistor saturation currents of PNP BJT show an average relative error of 6.0% compared with the measured data.

The Algorithm for Calculating the Base-Collector Breakdown Voltage of NPN BJT for Integrated Circuits (직접회로용 NPN BJT의 베이스-컬렉터간 역방향 항복전압 추출 알고리즘)

  • 이은구;김철성
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2003
  • The algorithm (or calculating the base-collector breakdown voltage of NPN BJT(Bipolar Junction Transistor) for integrated circuits is Proposed. The method for calculating the electric field using the solution of Poisson's equation is presented and the method for calculating the breakdown voltage using the integration of ionization coefficients is presented. The base-collector breakdown voltage of NPN BJT using 20V process obtained from the proposed method shows an averaged relative error of 8.0% compared with the measured data and the base-collector breakdown voltage of NPN BJT using 30V process shows an averaged relative error of 4.3% compared with the measured data

A study on the method for calculating the base-collector breakdown voltage of NPN BJT for integrated circuits (집적회로용 NPN BJT의 베이스-컬렉터간 역방향 항복전압 계산 방법에 관한 연구)

  • Lee, Eun-Gu;Lee, Dong-Ryul;Kim, Tae-Han;Kim, Cheol-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.137-140
    • /
    • 2002
  • The algorithm for calculating the base-collector breakdown voltage of NPN BJT(Bipolar Junction Transistor) for integrated circuits is proposed. The method for calculating the electric field using the solution of Poisson's equation is presented and the method for calculating the breakdown voltage using the integration of ionization coefficients is presented. The base-collector breakdown voltage of NPN BJT using 20V process obtained from the proposed method shows an averaged relative error of 8.0% compared with the measured data.

  • PDF

The BJT Design using Sentaurus Process (Sentaurus Process를 이용한 바이폴라 트랜지스터(BJT) 설계 시뮬레이션)

  • Ko, Hyung-Min;Jung, Hak-Kee;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.532-535
    • /
    • 2007
  • 본 연구에서는 Sentaurus Process를 사용하여 NPN 바이폴라 트랜지스터(BJT)를 시뮬레이션 하였다. 많은 종류의 반도체 소자가 개발되고 있으나 가장 먼저 BJT가 개발되었으며 이후 계속적인 발전을 거듭하여 MOSFET와 함께 개발 발전되었다. BJT를 이용한 회로는 광범위하게 응용되고 있으며 BJT는 여전히 중요한 회로의 한 소자로 사용되고 있다. 뿐만 아니라 BJT는 MOSFET와 결합된 집적회로 기술의 응용분야에 사용되고 있다. 이는 BJT 특성들이 특별하게 설계된 많은 반도체 소자에서 자주 사용된다는 것을 의미한다. 본 연구에서는 그 중에서도 특성상 많이 사용되는 NPN BJT를 시뮬레이션 프로그램인 Sentaurus Process를 통하여 구조의 특성을 파악하고자 한다.

  • PDF

A Study on Destruction Characteristics of BJT (Bipolar Junction Transistor) at Different Pulse Repetition Rate (다양한 펄스 반복률에서의 NPN BJT (Bipolar Junction Transistor)의 파괴 특성에 관한 연구)

  • Bang, Jeong-Ju;Huh, Chang-Su;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.167-171
    • /
    • 2014
  • This paper examines the destruction behavior of NPN BJT (bipolar junction transistor) by repetition pulse. The injected pulse has a rise time of 1 ns and the maximum peak voltage of 2 kV. Pulse was injected into the base of transistor. Transistor was destroyed, current flows even when the base power is turned off. Cause the destruction of the transistor is damaged by heat. Breakdown voltage of the transistor is 975 V at single pulse, and repetition pulse is 525~575 V. Pulse repetition rate increases, the DT (destruction threshold) is reduced. Pulse Repetition rate is high, level of transistor destruction is more serious.

A study on SCR-based bidirectional ESD protection device with high holding voltage due to parallel NPN BJT (Parallel NPN BJT로 인한 높은 홀딩 전압을 갖는 SCR 기반 양방향 ESD 보호 소자에 관한 연구)

  • Jung, Jang-Han;Woo, Je-Wook;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.735-740
    • /
    • 2021
  • In this paper, we propose a new ESD protection device with high holding voltage with low current gain of parasitic NPN BJT by improving the structure of the existing LTDDSCR. The electrical characteristics of the proposed protection device were analyzed by HBM simulation using Synopsys' TCAD simulation, and the operation of the added BJT was confirmed by current flow, impact ionization and recombination simulation. In addition, the holding voltage characteristics were optimized with the design variables D1 and D2. As a result of the simulation, it was verified that the new ESD protection device has a higher holding voltage compared to the existing LTDDSCR and has a symmetrical bidirectional characteristic. Therefore, the proposed ESD protection device has high area efficiency when applied to an IC and is expected to improve the reliability of the IC.

A Study on the Fabrication and Electrical Characteristics of High-Voltage BCD Devices (고내압 BCD 소자의 제작 및 전기적 특성에 관한 연구)

  • Kim, Kwang-Soo;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • In this paper, the high-voltage novel devices have been fabricated by 0.35 um BCD (Bipolar-CMOS-DMOS) process. Electrical characteristics of 20 V level BJT device, 30/60 V HV-CMOS, and 40/60 V LDMOS are analyzed. Also, the vertical/lateral BJT with the high-current gain and LIGBT with the high-voltage are proposed. In the experimental results, vertical/lateral BJT has breakdown voltage of 15 V and current gain of 100. The proposed LIGBT with the high-voltage has breakdown voltage of 195 V, threshold voltage of 1.5 V, and Vce, sat of 1.65 V.

The analysis on the Pulsed radiation effect for semiconductor unit devices (반도체 단위소자의 펄스방사선 영향분석)

  • Jeong, Sang-hun;Lee, Nam-ho;Lee, Min-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.775-777
    • /
    • 2016
  • In this paper presents an analysis of pulsed radiation effects of unit devices. Unit devices are the nMOSFET, pMOSFET, NPN Transistor and those fabricated by the 0.18um CMOS process. Pulsed radiation test results in nMOSFET, the photocurrent of tens nA was generated in $2.07{\times}10^8rad(si)/s$. For the pMOSFET, a photocurrent generation was not observed in $3{\times}10^8rad(si)/s$. For the NPN transistor, the photocurrent was generated with about 1uA. Therefore, the MOSFET must be used than BJT transistor when radhard IC design.

  • PDF

A Highly Accurate BiCMOS Cascode Current Mirror for Wide Output Voltage Range (광범위 출력전압을 위한 고정밀 BiCMOS cascode 전류미러)

  • Yang, Byung-Do
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.54-59
    • /
    • 2008
  • A highly accurate wide swing BiCMOS cascode current mirror is proposed. It uses the base-current compensated BJT current mirror. It increases both output impedance and output voltage range by using the npn-NMOS cascode instead of the NMOS-NMOS cascode. The npn transistor copies the input current and the NMOS transistor increases the output impedance for the accurate current mirroring. The proposed current mirror achieves highly constant current for wide output voltage range. Simulation results were verified with measurements performed on a fabricated chip using a 5/16V 0.5um BCD process. It has only $-2.5%{\sim}1.0%$ current error for $0.3V{\sim}16V$ output voltage range.