• Title/Summary/Keyword: N-doped ZnO thin film

Search Result 63, Processing Time 0.029 seconds

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.

Electrical and optical properties of Li & P co-doped ZnO thin film by PLD

  • Choi, Im-Sic;Kim, Don-Hyeong;Heo, Young-Woo;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.209-209
    • /
    • 2009
  • Fabrication of p-type ZnO has already proven difficult and usually inconsistent despite numerous worldwide efforts. Many research groups studied electrical and optical properties P, Li, As, N single doped ZnO thin film. In P-doped ZnO thin film, the reproducibility of p-type conduction with $P_2O_5$ as a dopant source was shown to be relatively poor. In this study, we made P single doped and Li & P co-doped ZnO target. To investigate electrical and optical properties of P single doped and Li & P co-doped ZnO thin film using $P_2O_5$ and $Li_3PO_4$ dopant source respectively was deposited by PLD. The growth temperature was changed 500, $700^{\circ}C$ and various oxygen partial pressure and post-annealing conditions was changed temperature, different gas ambient($O_2,N_2$). We investigate that how to change electrical and optical properties as function of growth temperature, oxygen partial pressure and post-annealing(RTA).

  • PDF

Characterization of Ga-doped ZnO thin films prepared by RF magnetron sputtering method (RF 마그네트론 스퍼터링법으로 합성된 Ga-doped ZnO 박막의 특성평가)

  • Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.73-77
    • /
    • 2021
  • Ga-doped ZnO thin films by RF magnetron sputtering process were synthesized according to the deposition conditions of O2 and Ar atmosphere gases, and rapid heat treatment (RTA) was performed at 600℃ in an N2 atmosphere. The thickness of the deposited ZnO : Ga thin film was measured, the crystal phase was investigated by XRD pattern analysis, and the microstructure of the thin film was observed by FE-SEM and AFM images. The intensity of the (002) plane of the X-ray diffraction pattern showed a significant difference depending on the deposition conditions of the thin films formed by O2 and Ar atmosphere gas types. In the case of a single thin f ilm doped with Ga under O2 conditions, a strong diffraction peak was observed. Under O2 and Ar conditions, in the case of a multilayer thin film with Ga doping, only a peak on the (002) plane with a somewhat weak intensity was shown. In the FE-SEM image, it was observed that the grain size of the surface of the thin film slightly increased as the thickness increased. In the case of a multilayer thin film with Ga doping under O2 and Ar atmosphere conditions, the specific resistance was 6.4 × 10-4 Ω·cm. In the case of a single thin film with Ga doping under O2 atmosphere conditions, the resistance of the thin film decreased. The resistance decreased as the thickness of the Ga-doped ZnO thin film increased to 2 ㎛, showing relatively a low specific resistance of 1.0 × 10-3 Ω·cm.

Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method (PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성)

  • Lee, Hong-Chan;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

Nano-structural Characteristics of N-doped ZnO Thin Films (N-doped ZnO 박막의 미세 구조 특성)

  • Lee, Eun-Ju;Zhang, Ruirui;Park, Jae-Don;Yoon, Gi-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2385-2390
    • /
    • 2009
  • N-doped ZnO thin films with c-axis preferred orientation were prepared on p-Si(100) wafers, using an RF magnetron sputter deposition. For ZnO deposition, $N_2O$ gas was employed as a dopant source and various deposition conditions such as $N_2O$ gas fraction and RF power were applied. The depth pofiles of the nitrogen [N] atoms incorporated into the ZnO thin films were investigated by Auger Electron Spectroscopy(AES) and the nano-scale structural characteristics of the N-doped ZnO thin films were also investigated by a scanning electron microscope (SEM) technique.

p-n heterojunction composed of n-ZnO/p-Zn-doped InP (n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구)

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Bang, Seong-Sik;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

p-n heterojunction composed of n-ZnO/p-Zn-doped InP (n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구)

  • 심은섭;강홍성;강정석;방성식;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process ws performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

Properties of Sputtered Ga Doped ZnO Thin Film Under Various Reaction Gas Ratio (Reaction Gas 변화에 따라 스퍼터된 Ga Doped ZnO 박막의 특성)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.289-293
    • /
    • 2013
  • We have studied structural, optical, and electrical properties of the Ga-doped ZnO (GZO) thin films being usable in transparent conducting oxides. The GZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of GZO for transparent conducting oxides, the Ar gas in sputtering process was varied as 40, 60, 80 and 100 sccm, respectively. As reaction gas decreased, the crystallinity of GZO thin film was increased, the optical bandgap of GZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in reaction gas. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with decreasing reaction gas. The structural, optical, and electrical properties of the GZO thin films were affected by Ga dopant content in GZO thin film.

Structural, Optical, and Electrical Properties of Sputtered Al doped ZnO Thin Film Under Various RF Powers (RF 파워에 따라 스퍼터된 Al doped ZnO 박막의 구조적, 광학적, 전기적 특성)

  • Kim, Jong-Wook;Kim, Deok-Kyu;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.177-181
    • /
    • 2011
  • We have studied structural, optical, and electrical properties of the Al-doped ZnO (AZO) thin films being usable in transparent conducting oxides. The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of AZO for transparent conducting oxides, the RF power in sputtering process was varied as 40 W, 60 W, and 80 W, respectively. As RF power increased, the crystallinity of AZO thin film was decreased, the optical bandgap of AZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in RF power. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with increasing RF power. The structural, optical, and electrical properties of the AZO thin films were affected by Al dopant content in AZO thin film.

Photoluminescence properties of N-doped and nominally undoped p-type ZnO thin films

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.65-66
    • /
    • 2008
  • The realization and origin of p-type ZnO are main issue for photoelectronic devices based on ZnO material. N-doped and nominally undoped p-type ZnO films were achieved on silicon (100) and homo-buffer layers by RF magnetron sputtering and post in-situ annealing. The undoped film shows high hole mobility of 1201 $cm^2V^{-1}s^{-1}$ and low resistivity of $0.0454\Omega{\cdot}cm$ with hole concentration of $1.145\times10^{17}cm^{-3}$. The photoluminescence(PL) spectra show the emissions related to FE, DAP and defects of $V_{Zn}$, $V_O$, $Zn_O$, $O_i$ and $O_{Zn}$.

  • PDF