Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.3.177

Structural, Optical, and Electrical Properties of Sputtered Al doped ZnO Thin Film Under Various RF Powers  

Kim, Jong-Wook (Electronic Engineering, Cheongju University)
Kim, Deok-Kyu (School of Electronic Engineering, Chungbuk National University)
Kim, Hong-Bae (School of Electronic and Information Engineering, Cheongju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.3, 2011 , pp. 177-181 More about this Journal
Abstract
We have studied structural, optical, and electrical properties of the Al-doped ZnO (AZO) thin films being usable in transparent conducting oxides. The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of AZO for transparent conducting oxides, the RF power in sputtering process was varied as 40 W, 60 W, and 80 W, respectively. As RF power increased, the crystallinity of AZO thin film was decreased, the optical bandgap of AZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in RF power. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with increasing RF power. The structural, optical, and electrical properties of the AZO thin films were affected by Al dopant content in AZO thin film.
Keywords
Al-doped ZnO; Transparent conducting oxide; RF magnetron sputtering; RF power;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth, 184/185, 605 (1998).   DOI
2 B. D. Cullity, Elements of X-ray Diffractions, (Addison-Wesley, Reading, 1978) p.102.
3 X. Chen, W. Guan, G. Fang, X. Z. Zhao, Appl. Surf. Sci, 252, 1561 (2005).   DOI
4 B. E. Semelius, K. F. Berggren, Z. C. Jin, I. Hamberg, C. G. Granqvist, Phys. Rev. B, 37, 10244 (1988).   DOI
5 I. Yasuhiro, S. Hiromi, Thin Solid Films, 199, 223 (1991).   DOI
6 Z. Y. Wang, L. Z. Hu, J. Zhao, J. Sun, Z. J. Wang, Vacuum, 78, 53 (2005).   DOI
7 G. Frank, E. Kauer, H. Kostlin, F. J. Schmitte, Solar Energy Materials, 8, 387 (1983).   DOI
8 B. K. Choi, D. H. Chang, Y. S. Yoon, S. J. Kang, J. Mater. Sci: Mater. Electron, 17, 1011 (2006).   DOI
9 C. J. Tun, J. K. Sheu, B. J. Pong, M.L. Lee, C. K. Hsieh, C. C. Hu, G. C. Chi, IEEE Photon. Technol. Lett, 18, 274 (2006).   DOI
10 S. Y. Kuo, W. C. Chen, F. I. Lai, J. Cryst. Growth, 287, 78 (2006).   DOI
11 S. Zafar, C. S. Ferekides, D .L. Morel, J. Vac. Sci. Technol. A13, 2177 (1955).
12 T. D. Kang, H. S. Lee, W. I. Park, G. C Yi. J. Korean Pyhs. Soc, 44, 129 (2004).
13 D. H. Kong, W. C. Choi, Y. C. Shin, J. H. Park, T. G. Kim, J. Korean. Phys. Soc, 48, 1214 (2006).
14 M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, C. H. Park, Phys. Stat. Sol. (a), 203, 2418 (2006).   DOI
15 K. H. Kim, K. C. Park, D. Y. Ma, J. Appl. Phys, 81, 7764 (1997).   DOI
16 Y. Zhang, G. Du, B. Liu, J. Cryst. Growth, 262, 456 (2004).   DOI   ScienceOn