DOI QR코드

DOI QR Code

Properties of Sputtered Ga Doped ZnO Thin Film Under Various Reaction Gas Ratio

Reaction Gas 변화에 따라 스퍼터된 Ga Doped ZnO 박막의 특성

  • Received : 2013.02.20
  • Accepted : 2013.03.24
  • Published : 2013.04.01

Abstract

We have studied structural, optical, and electrical properties of the Ga-doped ZnO (GZO) thin films being usable in transparent conducting oxides. The GZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of GZO for transparent conducting oxides, the Ar gas in sputtering process was varied as 40, 60, 80 and 100 sccm, respectively. As reaction gas decreased, the crystallinity of GZO thin film was increased, the optical bandgap of GZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in reaction gas. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with decreasing reaction gas. The structural, optical, and electrical properties of the GZO thin films were affected by Ga dopant content in GZO thin film.

Keywords

References

  1. Z. Y. Wang, L. Z. Hu, J. Zhao, J. Sun, and Z. J. Wang, Vacuum, 78, 53 (2005). https://doi.org/10.1016/j.vacuum.2004.12.014
  2. T. Minami, Nanto, and S. Takata, J. Jap, 23(5), L280 (1984).
  3. G. Frank, E. Kauer, H. Kostlin, and F. J. Schmitte, Solar Energy Materials, 8, 387 (1983). https://doi.org/10.1016/0165-1633(83)90004-7
  4. B. K. Choi, D. H. Chang, Y. S. Yoon, and S. J. Kang, J. Mater. Sci: Mater. Electron., 17, 1011 (2006).
  5. C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, IEEE Photon. Technol. Lett., 18, 274 (2006). https://doi.org/10.1109/LPT.2005.861987
  6. S. Y. Kuo, W. C. Chen, and F. I. Lai, J. Cryst. Growth, 287, 78 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.047
  7. S. Zafar, C. S. Ferekides, and D. L. Morel, J. Vac. Sci. Technol., A13, 2177 (1955).
  8. T. D. Kang, H. S. Lee, W. I. Park, and G. C Yi. J. Korean Pyhs. Soc., 44, 129 (2004).
  9. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. (a), 203, 2418 (2006). https://doi.org/10.1002/pssa.200521398
  10. K. H. Kim, K. C. Park, and D. Y. Ma, J. Appl. Phys., 81, 7764 (1997). https://doi.org/10.1063/1.365556
  11. Y. Zhang, G. Du, and B. Liu, J. Cryst. Growth, 262, 456 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.079
  12. D. H. Kong, W. C. Choi, Y. C. Shin, J. H. Park, and T. G. Kim, J. Korean. Phys. Soc., 48, 1214 (2006).
  13. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth, 184/185, 605 (1998). https://doi.org/10.1016/S0022-0248(98)80127-9
  14. A. Van der Drift. Philips Res. Rep., 22, 267 (1967).
  15. B. D. Cullity, Elements of X-ray Diffractions, (Addison-Wesley, Reading, MA, 1978) p. 102.
  16. S. Kim, W. I. Lee, E. H. Lee, S. K. Hwang, and C. Lee. J Mater Sci., 42, 4845 (2007). https://doi.org/10.1007/s10853-006-0738-8
  17. B. E. Semelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Phys. Rev. B, 37, 10244 (1988). https://doi.org/10.1103/PhysRevB.37.10244
  18. I. Yasuhiro and S. Hiromi, Thin Solid Films, 199, 223 (1991). https://doi.org/10.1016/0040-6090(91)90004-H