DOI QR코드

DOI QR Code

Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method

PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성

  • Lee, Hong-Chan (Thin Film Materials Research Center, Korea Institute of Science and Technology) ;
  • Shim, Kwang-Bo (Department of Ceramic Engineering, Hanyang University) ;
  • Oh, Young-Jei (Thin Film Materials Research Center, Korea Institute of Science and Technology)
  • 이홍찬 (한국과학기술연구원 박막재료연구센터) ;
  • 심광보 (한양대학교 세라믹공학과) ;
  • 오영제 (한국과학기술연구원 박막재료연구센터)
  • Published : 2006.03.31

Abstract

Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

Keywords

References

  1. Y. H. Leung and A. B. Djurisic, 'Changing the shape of ZnO nanostructures by controlling Zn vapor release: from tetrapod to bone-like nanorods', Chem. Phys. Lett., vol. 385, pp. 155-159, 2004 https://doi.org/10.1016/j.cplett.2003.12.102
  2. X. L. Hu, Y. J. Znu, and S. W. Wang, 'Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods', Materials. Chem. Phys., vol. 88, pp. 421-426, 2004 https://doi.org/10.1016/j.matchemphys.2004.08.010
  3. Y. Dai, Y. Zhang, and Z. L. Wang, 'The octa-twin tetraleg ZnO nanostructures', Solid State Commun., vol. 126, pp. 629-633, 2003 https://doi.org/10.1016/S0038-1098(03)00277-1
  4. J. D. Albrecht, P. P. Ruden, and S. Limpijumnong, 'High field electron transport properties of bulk ZnO', J. Appl. Phys., vol. 86, pp. 6864-6867, 1998
  5. Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, and Q. Zhao, 'Efficient field emission from ZnO nanoneedle arrays', Appl. Phys. Lett., vol. 83, pp. 144-146, 2003 https://doi.org/10.1063/1.1589166
  6. V. Craciun, J. Geretovsky, l. W. Boyd, J. Elders, and J. G. E. Gardeniers, 'Growth of ZnO thin films on GaAs by pulsed laser deposition', Thin Solid Films, vol. 259, pp. 1-4, 1995 https://doi.org/10.1016/0040-6090(94)09479-9
  7. Q. P. Wang, D. H. Zhang, Z. Y. Xue, and X. J. Zhang, 'Mechanisms of green emission from ZnO films prepared by rf-magnetron sputtering', Optical Materials, vol. 26, pp. 23-26, 2004 https://doi.org/10.1016/j.optmat.2003.12.005
  8. K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe, and H. Takasu, 'ZnO growth on Si by radical source MBE', J. Cryst. Growth, vol. 214, pp. 50-54, 2000 https://doi.org/10.1016/S0022-0248(00)00057-9
  9. M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung, 'Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD)', J. Cryst. Growth, vol. 268, pp. 149-154, 2004 https://doi.org/10.1016/j.jcrysgro.2004.05.019
  10. R. Tena-Zaera, M. C. Martinez-Tomas, and S. Hassani, 'Study of the ZnO crystal growth by vapour transport methods', J. Cryst. Growth, vol. 270, pp. 711-721, 2004 https://doi.org/10.1016/j.jcrysgro.2004.06.053