Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.4.289

Properties of Sputtered Ga Doped ZnO Thin Film Under Various Reaction Gas Ratio  

Kim, Jong-Wook (Research & Development, TES Co. Ltd.)
Kim, Hong-Bae (School of Electronics Engineering, Cheongju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.4, 2013 , pp. 289-293 More about this Journal
Abstract
We have studied structural, optical, and electrical properties of the Ga-doped ZnO (GZO) thin films being usable in transparent conducting oxides. The GZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of GZO for transparent conducting oxides, the Ar gas in sputtering process was varied as 40, 60, 80 and 100 sccm, respectively. As reaction gas decreased, the crystallinity of GZO thin film was increased, the optical bandgap of GZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in reaction gas. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with decreasing reaction gas. The structural, optical, and electrical properties of the GZO thin films were affected by Ga dopant content in GZO thin film.
Keywords
Ga-doped ZnO; Transparent conducting oxide; RF magnetron sputtering; Reaction gas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Frank, E. Kauer, H. Kostlin, and F. J. Schmitte, Solar Energy Materials, 8, 387 (1983).   DOI   ScienceOn
2 B. K. Choi, D. H. Chang, Y. S. Yoon, and S. J. Kang, J. Mater. Sci: Mater. Electron., 17, 1011 (2006).
3 C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, IEEE Photon. Technol. Lett., 18, 274 (2006).   DOI
4 S. Y. Kuo, W. C. Chen, and F. I. Lai, J. Cryst. Growth, 287, 78 (2006).   DOI   ScienceOn
5 S. Zafar, C. S. Ferekides, and D. L. Morel, J. Vac. Sci. Technol., A13, 2177 (1955).
6 T. D. Kang, H. S. Lee, W. I. Park, and G. C Yi. J. Korean Pyhs. Soc., 44, 129 (2004).
7 M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. (a), 203, 2418 (2006).   DOI   ScienceOn
8 K. H. Kim, K. C. Park, and D. Y. Ma, J. Appl. Phys., 81, 7764 (1997).   DOI   ScienceOn
9 Y. Zhang, G. Du, and B. Liu, J. Cryst. Growth, 262, 456 (2004).   DOI   ScienceOn
10 D. H. Kong, W. C. Choi, Y. C. Shin, J. H. Park, and T. G. Kim, J. Korean. Phys. Soc., 48, 1214 (2006).
11 D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth, 184/185, 605 (1998).   DOI   ScienceOn
12 A. Van der Drift. Philips Res. Rep., 22, 267 (1967).
13 B. D. Cullity, Elements of X-ray Diffractions, (Addison-Wesley, Reading, MA, 1978) p. 102.
14 S. Kim, W. I. Lee, E. H. Lee, S. K. Hwang, and C. Lee. J Mater Sci., 42, 4845 (2007).   DOI   ScienceOn
15 B. E. Semelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Phys. Rev. B, 37, 10244 (1988).   DOI   ScienceOn
16 I. Yasuhiro and S. Hiromi, Thin Solid Films, 199, 223 (1991).   DOI   ScienceOn
17 Z. Y. Wang, L. Z. Hu, J. Zhao, J. Sun, and Z. J. Wang, Vacuum, 78, 53 (2005).   DOI   ScienceOn
18 T. Minami, Nanto, and S. Takata, J. Jap, 23(5), L280 (1984).