Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.1.024

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method  

Liu, Yan-Yan (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS)
Jin, Hu-Jie (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS)
Park, Choon-Bae (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS)
Hoang, Geun C. (Department of Semiconductor and Display, Wonkwang University, WRISS)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.1, 2009 , pp. 24-27 More about this Journal
Abstract
N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.
Keywords
P-type ZnO film; Homo-buffer layer; RF magnetron sputtering; Photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. J. Zeng, Z. Z. Ye, W. Z. Xu, B. Liu, Y. Che, L. P. Zhu, and B. H. Zhao, J. Mater. Sci. 10, 1419 (1995)   DOI   ScienceOn
2 J. Y. Huang, Z. Z. Ye, H. H. Chen, B. H. Zhao, and L. Wang, J. Mater. Sci. 22, 249 (2003)
3 H.-J. Jin, S.-H. Oh, and C.-B. Park, Appl. Surf. Sci. 254, 2207 (2008)   DOI   ScienceOn
4 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phy. 98, 041301 (2005)   DOI   ScienceOn
5 H. M. Zhang, Y. Cui, Y. G. Men, and X. S. Liu, J. Lumin, 121, 601 (2006)   DOI   ScienceOn
6 C. H. Park, S. B. Zhang, and S. H. Wei, Phy. Rev. B, 66, 073202 (2002)   DOI   ScienceOn
7 J. Z. Wang, V. Sallet, F. Jomard, A. M. Botelho do Rego, E. Elamurugu, R. Martins, and E. Fortunato, Thin Solid Films 515, 8781 (2007)
8 H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, Mater. Sci. Eng. 8, 102, 313 (2003)
9 H.-J. Jin, S.-J. So, and C.-B. Park, J. of KIEEME(in Korean) 20, 202 (2007)
10 Z. Z. Ye, J. G. Lu, H. H. Chen, Y. Z. Zhang, L. Wang, B. H. Zhao, and J. Y. Huang, J. Crystal Growth 253, 259 (2003)   DOI   ScienceOn