• Title/Summary/Keyword: Multilevel DC-link

Search Result 36, Processing Time 0.029 seconds

Design and Implementation of a New Multilevel DC-Link Three-phase Inverter

  • Masaoud, Ammar;Ping, Hew Wooi;Mekhilef, Saad;Taallah, Ayoub;Belkamel, Hamza
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.292-301
    • /
    • 2014
  • This paper presents a new configuration for a three-phase multilevel voltage source inverter. The main bridge is built from a classical three-phase two-level inverter and three bidirectional switches. A variable DC-link employing two unequal DC voltage supplies and four switches is connected to the main circuit in such a way that the proposed inverter produces four levels in the output voltage waveform. In order to obtain the desired switching gate signals, the fundamental frequency staircase modulation technique is successfully implemented. Furthermore, the proposed structure is extended and compared with other types of multilevel inverter topologies. The comparison shows that the proposed inverter requires a smaller number of power components. For a given number of voltage steps N, the proposed inverter requires N/2 DC voltage supplies and N+12 switches connected with N+7 gate driver circuits, while diode clamped or flying capacitor inverters require N-1 DC voltage supplies and 6(N-1) switches connected with 6(N-1) gate driver circuits. A prototype of the introduced configuration has been manufactured and the obtained simulation and experimental results ensure the feasibility of the proposed topology and the validity of the implemented modulation technique.

Design and Analysis of a Triple Output DC/DC Converter with One Switch for Photovoltaic Multilevel Single Phase Inverter (태양광 멀티레벨 단상 인버터를 위한 단일 스위치를 가지는 삼중 출력 DC/DC 컨버터 설계 및 해석)

  • Choi, Woo-Seok;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.82-89
    • /
    • 2014
  • The industrial products to use single phase inverter are raised the necessity of power quality improvement, such as AC Motor Driver, Lighting, Renewable energy power converter. Also, it is increasing that applied the single phase multilevel inverter for high quality power at renewable energy power converter. Especially, the photovoltaic multilevel inverters have at least more than two DC_Link and more than one DC/DC Converter. This paper proposes a triple output DC/DC Converter with one switch for photovoltaic multilevel inverter. The proposed converter has advantages of low cost and volume because it has one switch. The operation principle of the converter is analyzed and verified. A prototype is implemented to verify of the proposed converter.

A New Single-Phase Asymmetrical Cascaded Multilevel DC-Link Inverter

  • Ahmed, Mahrous;Hendawi, Essam
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1504-1512
    • /
    • 2016
  • This paper presents a new single-phase asymmetrical cascaded multilevel DC-link inverter. The proposed inverter comprises two stages. The main stage of the inverter consists of multiple similar cells, each of which is a half-bridge inverter consisting of two switches and a single DC source. All cells are connected in a cascaded manner with a fixed neutral point. The DC source values are not made equal to increase the performance of the inverter. The second circuit is a folded cascaded H-bridge circuit operating at a line frequency. One of the main advantages of this proposed topology is that it is a modular type and can thus be extended to high stages without changing the configuration of the main stage circuit. Two control schemes, namely, low switching with selective harmonic elimination and sinusoidal pulse width modulation, are employed to validate the proposed topology. The detailed approach of each control scheme and switching pulses are discussed in detail. A 150W prototype of the proposed system is implemented in the laboratory to verify the validity of the proposed topology.

A Multilevel Inverter Using DC Link Voltage Combination (DC링크 전압 조합을 이용한 멀티 레벨 인버터)

  • Joo S.Y.;Lee J.H.;Kang F.S.;Kim C.U.;Park S.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.621-624
    • /
    • 2003
  • In this paper, a novel multilevel inverter using DC-Link voltage combination is presented to reduce the harmonics of output voltage without the output filter inductor. The proposed multilevel inverter can generate 27-level output voltage. It employs three H-bridge cells which consist of single phase full-bridge inverter module. As well as, it can make continuous output voltage level employing the properly three DC-Link voltage ratio. The validity of the proposed inverter is verified through the experimental result using a prototype which can generate a 110[Vac], 60[Hz] output voltage from 12[Vdc], 36[vdc], and 108[Vdc] input voltages

  • PDF

Leg-Balancing Control of the DC-link Voltage for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Lin, Jiliang
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.739-747
    • /
    • 2012
  • This paper applies carrier phase shifted pulse-width modulation (CPS-PWM) to transformerless modular multilevel converters (MMC) to improve the output spectrum. Because the MMC topology is characterized by the double-star connection of six legs consisting of cascaded modular chopper cells with floating capacitors, the balance control of the DC-link capacitor voltage is essential for safe operation. This paper presents a leg-balancing control strategy to achieve DC-link voltage balance under all operating conditions. This strategy based on circulating current decoupling control focused on DC-link balancing between the upper and lower legs in each phase pair by considering the six legs as three independent phase-pairs. Experiments are implemented on a 100-V 3-kVA downscaled prototype. The experimental results show that the proposed leg-balancing control is both effective and practical.

A Novel Modulation Scheme and a DC-Link Voltage Balancing Control Strategy for T-Type H-Bridge Cascaded Multilevel Converters

  • Wang, Yue;Hu, Yaowei;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2099-2108
    • /
    • 2016
  • The cascaded multilevel converter is widely adopted to medium/high voltage and high power electronic applications due to the small harmonic components of the output voltage and the facilitation of modularity. In this paper, the operation principle of a T-type H-bridge topology is investigated in detail, and a carrier phase shifted pulse width modulation (CPS-PWM) based control method is proposed for this topology. Taking a virtual five-level waveform achieved by a unipolar double frequency CPS-PWM as the output object, PWM signals of the T-type H-bridge can be obtained by reverse derivation according to its switching modes. In addition, a control method for the T-type H-bridge based cascaded multilevel converter is introduced. Then a single-phase T-type H-bridge cascaded multilevel static var generator (SVG) prototype is built, and a repetitive controller based compound current control strategy is designed with the DC-link voltage balancing control scheme analyzed. Finally, simulation and experimental results validate the correctness and feasibility of the proposed modulation method and control strategy for T-type H-bridge based cascaded multilevel converters.

A Level Dependent Source Concoction Multilevel Inverter Topology with a Reduced Number of Power Switches

  • Edwin Jose, S.;Titus, S.
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1316-1323
    • /
    • 2016
  • Multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to their inherent properties such as reduced harmonic distortion, lower electromagnetic interference, minimal common mode voltage, ability to synthesize medium/high voltage from low voltage sources, etc. On the other hand, they suffer from an increased number of switching devices, complex gate pulse generation, etc. This paper develops an ingenious symmetrical MLI topology, which consumes lesser component count. The proposed level dependent sources concoction multilevel inverter (LDSCMLI) is basically a multilevel dc link MLI (MLDCMLI), which first synthesizes a stepped dc link voltage using a sources concoction module and then realizes the ac waveform through a conventional H-bridge. Seven level and eleven level versions of the proposed topology are simulated in MATLAB r2010b and prototypes are constructed to validate the performance. The proposed topology requires lesser components compared to recent component reduced MLI topologies and the classical topologies. In addition, it requires fewer carrier signals and gate driver circuits.

DC Voltage Balancing Control for Multilevel H-Bridge STATCOM (다단 인버터 STATCOM의 직류전압 평형 제어)

  • Kim, Kyoung-Jin;Song, Seong Ho;Jeong, Seung-Gi
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.234-237
    • /
    • 2010
  • This paper proposes a balancing control of DC-link voltages of a H-bridge multilevel inverter for STATCOM application. Individual DC link voltage is controlled by simply adjusting the d-q voltage reference through a PI controller in each cell while the main controller carries out the reactive power control. The correctness and effectiveness of the method are validated by PSIM simulation with unbalanced load condition data taken from a typical arc furnace load, showing the adverse effects of load unbalance to DC link voltage significantly suppressed.

  • PDF

A novel hybrid multilevel inverter using DC-Link voltage combination (DC 링크 전압조합을 이용한 새로운 Hybrid형 멀티레벨 인버터)

  • 주성용;강필순;박성준;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2004
  • This paper presents a novel hybrid multilevel inverter using DC-Link voltage combination in order to improve the waveshape of output voltage and reduce harmonics. The proposed multilevel inverter can generate an 11-level output voltage. It employs three H-bridge cell, which consists of single phase full-bridge inverter module. Among them, two modules are used for level generation, and one module performs PWM switching. Nine levels are synthesised by the level inverter, and two levels are added to output by the PWM inverter. As a result, it generates an 11-level. The operational principles are explained in depth, and the validity of the proposed system is verified through the PSpice simulation and experimental results based on a prototype.

Performance Analysis of a Novel Reduced Switch Cascaded Multilevel Inverter

  • Nagarajan, R.;Saravanan, M.
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.48-60
    • /
    • 2014
  • Multilevel inverters have been widely used for high-voltage and high-power applications. Their performance is greatly superior to that of conventional two-level inverters due to their reduced total harmonic distortion (THD), lower switch ratings, lower electromagnetic interference, and higher dc link voltages. However, they have some disadvantages such as an increased number of components, a complex pulse width modulation control method, and a voltage-balancing problem. In this paper, a novel nine-level reduced switch cascaded multilevel inverter based on a multilevel DC link (MLDCL) inverter topology with reduced switching components is proposed to improve the multilevel inverter performance by compensating the above mentioned disadvantages. This topology requires fewer components when compared to diode clamped, flying capacitor and cascaded inverters and it requires fewer carrier signals and gate drives. Therefore, the overall cost and circuit complexity are greatly reduced. This paper presents modulation methods by a novel reference and multicarrier based PWM schemes for reduced switch cascaded multilevel inverters (RSCMLI). It also compares the performance of the proposed scheme with that of conventional cascaded multilevel inverters (CCMLI). Simulation results from MATLAB/SIMULINK are presented to verify the performance of the nine-level RSCMLI. Finally, a prototype of the nine-level RSCMLI topology is built and tested to show the performance of the inverter through experimental results.