• Title/Summary/Keyword: Metric Invariant

Search Result 108, Processing Time 0.026 seconds

THE TRANSFORMATION GROUPS AND THE ISOMETRY GROUPS

  • Kim, Young-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 1989
  • Methods of Riemannian geometry has played an important role in the study of compact transformation groups. Every effective action of a compact Lie group on a differential manifold leaves a Riemannian metric invariant and the study of such actions reduces to the one involving the group of isometries of a Riemannian metric on the manifold which is, a priori, a Lie group under the compact open topology. Once an action of a compact Lie group is given an invariant metric is easily constructed by the averaging method and the Lie group is naturally imbedded in the group of isometries as a Lie subgroup. But usually this invariant metric has more symmetries than those given by the original action. Therefore the first question one may ask is when one can find a Riemannian metric so that the given action coincides with the action of the full group of isometries. This seems to be a difficult question to answer which depends very much on the orbit structure and the group itself. In this paper we give a sufficient condition that a subgroup action of a compact Lie group has an invariant metric which is not invariant under the full action of the group and figure out some aspects of the action and the orbit structure regarding the invariant Riemannian metric. In fact, according to our results, this is possible if there is a larger transformation group, containing the oringnal action and either having larger orbit somewhere or having exactly the same orbit structure but with an orbit on which a Riemannian metric is ivariant under the orginal action of the group and not under that of the larger one. Recently R. Saerens and W. Zame showed that every compact Lie group can be realized as the full group of isometries of Riemannian metric. [SZ] This answers a question closely related to ours but the situation turns out to be quite different in the two problems.

  • PDF

NILPOTENCY OF THE RICCI OPERATOR OF PSEUDO-RIEMANNIAN SOLVMANIFOLDS

  • Huihui An;Shaoqiang Deng;Zaili Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.867-873
    • /
    • 2024
  • A pseudo-Riemannian solvmanifold is a solvable Lie group endowed with a left invariant pseudo-Riemannian metric. In this short note, we investigate the nilpotency of the Ricci operator of pseudo-Riemannian solvmanifolds. We focus on a special class of solvable Lie groups whose Lie algebras can be expressed as a one-dimensional extension of a nilpotent Lie algebra ℝD⋉n, where D is a derivation of n whose restriction to the center of n has at least one real eigenvalue. The main result asserts that every solvable Lie group belonging to this special class admits a left invariant pseudo-Riemannian metric with nilpotent Ricci operator. As an application, we obtain a complete classification of three-dimensional solvable Lie groups which admit a left invariant pseudo-Riemannian metric with nilpotent Ricci operator.

YANG-MILLS CONNECTIONS ON CLOSED LIE GROUPS

  • Pyo, Yong-Soo;Shin, Young-Lim;Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.651-661
    • /
    • 2010
  • In this paper, we obtain a necessary and sufficient condition for a left invariant connection in the tangent bundle over a closed Lie group with a left invariant metric to be a Yang-Mills connection. Moreover, we have a necessary and sufficient condition for a left invariant connection with a torsion-free Weyl structure in the tangent bundle over SU(2) with a left invariant Riemannian metric g to be a Yang-Mills connection.

CHARACTERIZATIONS FOR TOTALLY GEODESIC SUBMANIFOLDS OF (𝜅, 𝜇)-PARACONTACT METRIC MANIFOLDS

  • Atceken, Mehmet;Uygun, Pakize
    • Korean Journal of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.555-571
    • /
    • 2020
  • The aim of the present paper is to study pseudoparallel invariant submanifold of a (𝜅, 𝜇)-paracontact metric manifold. We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo parallel invariant submanifolds of a (𝜅, 𝜇)-paracontact metric manifold and we obtain new results contribute to geometry.

HYPERSURFACES OF ALMOST γ-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Haseeb, Abdul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.477-487
    • /
    • 2009
  • We define a quarter symmetric metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, noninvariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection.

COMMON FIXED POINTS AND INVARIANT APPROXIMATIONS FOR SUBCOMPATIBLE MAPPINGS IN CONVEX METRIC SPACE

  • Nashine, Hemant Kumar;Kim, Jong-Kyu
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Existence of common fixed points for generalized S-nonexpansive subcompatible mappings in convex metric spaces have been obtained. Invariant approximation results have also been derived by its application. These results extend and generalize various known results in the literature with the aid of more general class of noncommuting mappings.

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF INVARIANT (α1, α2)-METRICS ON SPHERES

  • Huihui, An;Zaili, Yan;Shaoxiang, Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.33-46
    • /
    • 2023
  • Geodesic orbit spaces are homogeneous Finsler spaces whose geodesics are all orbits of one-parameter subgroups of isometries. Such Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov volume comparison theorem. In this paper, we obtain a complete description of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it is Sp(n + 1)Sp(1)-invariant. As an interesting consequence, we find infinitely many Finsler spheres with vanishing S-curvature which are not geodesic orbit spaces.

CONFORMAL CHANGES OF A RIZZA MANIFOLD WITH A GENERALIZED FINSLER STRUCTURE

  • Park, Hong-Suh;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.327-340
    • /
    • 2003
  • We are devoted to dealing with the conformal theory of a Rizza manifold with a generalized Finsler metric $G_{ij}$ (x,y) and a new conformal invariant non-linear connection $M^{i}$ $_{j}$ (x,y) constructed from the generalized Cern's non-linear connection $N^{i}$ $_{j}$ (x,y) and almost complex structure $f^{i}$ $_{j}$ (x). First, we find a conformal invariant connection ( $M_{j}$ $^{i}$ $_{k}$ , $M^{i}$ $_{j}$ , $C_{j}$ $^{i}$ $_{k}$ ) and conformal invariant tensors. Next, the nearly Kaehlerian (G, M)-structures under conformal change in a Rizza manifold are investigate.

A DECOMPOSITION OF THE CURVATURE TENSOR ON SU(3)=T (k, l) WITH A SU(3)-INVARIANT METRIC

  • Son, Heui-Sang;Park, Joon-Sik;Pyo, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.229-241
    • /
    • 2015
  • In this paper, we decompose the curvature tensor (field) on the homogeneous Riemannian manifold SU(3)=T (k, l) with an arbitrarily given SU(3)-invariant Riemannian metric into three curvature-like tensor fields, and investigate geometric properties.