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COMMON FIXED POINTS AND INVARIANT
APPROXIMATIONS FOR SUBCOMPATIBLE MAPPINGS

IN CONVEX METRIC SPACE

Hemant Kumar Nashine and Jong Kyu Kim

Abstract. Existence of common fixed points for generalized S-nonexpansive

subcompatible mappings in convex metric spaces have been obtained. In-
variant approximation results have also been derived by its application.

These results extend and generalize various known results in the literature

with the aid of more general class of noncommuting mappings.

1. Introduction and Preliminaries

Following definition is the notion of convex structure introduced by Taka-
hashi [17].

Definition 1.1. [17] Let (X, d) be a metric space. A continuous mapping
W : X × X × [0, 1] → X is said to be a convex structure on X, if for all
x, y ∈ X and λ ∈ [0, 1] the following condition is satisfied:

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y), for all u ∈ X.

A metric space X with convex structure W is called a convex metric space.
Every normed space is a convex metric space with W (x, y, λ) = λx+ (1− λ)y.
But a Fréchet space is not necessary a convex metric space. There are many
examples of convex metric spaces which are not imbedded in a normed space.

Example 1.2. Let I be the unit interval [0, 1] and X be the family of closed
intervals [ai, bi] such that 0 ≤ ai ≤ bi ≤ 1. For Ii = [ai, bi], Ij = [aj , bj ] and
λ(0 ≤ λ ≤ 1), we define a mapping W by W (Ii, Ij , λ) = [λai + (1− λ)aj , λbi +
(1− λ)bj ] and define a metric d in X by the Hausdorff distance, i.e.,

d(Ii, Ij) = sup
a∈I
{| inf

b∈Ii

{|a− b|} − inf
c∈Ij

{|a− c|}|}.

Then (X, d,W ) is a convex metric space.
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Definition 1.3. [17] A subset M of a convex metric space X is said to be
convex, if W (x, y, λ) ∈M for all x, y ∈M and λ ∈ [0, 1]. The set M is said to
be p-starshaped if there exists p ∈ M such that W (p, x, λ) ∈ M for all x ∈ M
and λ ∈ [0, 1]. Clearly p-starshaped subsets of X contain all convex subsets of
X as a proper subclass.

Definition 1.4. [17] A convex metric space X is said to satisfy property (I),
if for all x, y ∈ X and λ ∈ [0, 1],

d(W (p, x, λ),W (p, y, λ)) ≤ λd(x, y).

Definition 1.5. [17] A continuous function S from a closed convex subset M
of a convex metric space X into itself is said to be affine if

S(W (x, y, λ)) = W (Sx, Sy, λ)

whenever λ ∈ [0, 1] ∩ Q and x, y ∈ M , where Q denotes the set of all rational
numbers.

Definition 1.6. [13] Let M be a subset of a metric space X. Let x0 ∈ X. An
element y ∈M is called a best approximant to x0 ∈ X, if

d(x0, y) = d(x0,M) = inf{d(x0, z) : z ∈M}.

Let PM (x0) be the set of best M−approximants to x0. That is,

PM (x0) = {z ∈M : d(x0, z) = d(x0,M)}.

Definition 1.7. [5] A pair (S, T ) of self-mappings of a metric space X is said
to be compatible, if d(TSxn, STxn) → 0, whenever {xn} is a sequence in X
such that Txn, Sxn → t ∈ X.

Every commuting pair of mappings is compatible but the converse is not
true.

Jungck introduced the concept of weakly compatible maps as follows:

Definition 1.8. [6] A pair (S, T ) of self-mappings of a metric space X is said
to be weakly compatible, if they commute at there coincidence points, i.e., if
Tu = Su for some u ∈ X, then TSu = STu.

It is easy to see that compatible maps are weakly compatible.

Definition 1.9. Suppose that M is p-starshaped with p ∈ F(S)(set of fixed
points of S ) and is both T -invariant and S-invariant. Then T and S are called
R-subcommuting on M , if for all x ∈M there exists a real number R > 0 such
that

d(STx, TSx) ≤ (
R

k
)d(seg[p, Tx], Sx)
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for each k ∈ (0, 1]. If R = 1, then the maps are called 1-subcommuting. The S
and T are called R-subweakly commuting on M , if for all x ∈ M there exists
a real number R > 0 such that

d(STx, TSx) ≤ Rd(Sx, seg[p, Tx]),

where seg[p, x] = W (p, x, k) : 0 ≤ k ≤ 1.

Definition 1.10. Suppose that M is p-starshaped with p ∈ F(S), define∧
p(S, T ) = {

∧
(S, T ) : 0 ≤ k ≤ 1}, where Tkx = seg[p, Tx] and

∧
(S, T ) =

{{xn} ⊂ M : limn Sxn = limn Tkxn = t ∈ M ⇒ limn d(STkxn, TkSxn) = 0}.
Then S and T are called subcompatible [14, 15] if

lim
n
d(STxn, TSxn) = 0

for all sequences xn ∈
∧

p(S, T ).

Obviously, subcompatible maps are compatible but the converse does not
hold.

Example 1.11. LetX = R with usual metric andM = [0,∞). Let Sx = 2x−1
and Tx = x2, for all x ∈M . Let p = 1. Then M is p-starshaped with Sp = p.
Note that S and T are compatible. For any sequence {xn} in M with limn xn =
2, we have, limn Sxn = limn T 2

3
xn = 3 ∈ M ⇒ limn d(ST 2

3
xn, T 2

3
xn) = 0.

However, limn d(STxn, TSxn) = 0. Thus S and T are not subcompatible maps.

Note that R-subweakly commuting and R-subcommuting maps are subcom-
patible. The following simple example reveals that the converse is not true.

Example 1.12. Let X = R with usual metric and M = [0,∞). Let Sx = x
2 if

0 ≤ x < 1 and Sx = x if x = 1, and Tx = 1
2 if 0 ≤ x < 1 and Tx = x2 if x = 1.

Then M is 1-starshaped with S1 = 1 and
∧

p(S, T ) = {{xn} : 1 ≤ xn < ∞}.
Note that S and T are subcompatible but not R-weakly commuting for all R >
0. Thus S and T are neither R-subweakly commuting nor R-subcommuting
maps.

The weak commutativity of a pair of selfmaps on a metric space depends on
the choice of the metric. This is true for compatibility, R-weak commutativity
and other variants of commutativity of maps as well.

Example 1.13. Let X = R with usual norm and M = [1,∞). Let Sx = 1 +x
and Tx = 2+x2. Then |STx−TSx| = 2x and |Sx−Tx| = |x2−x+1|. Thus the
pair (S, T ) is not weakly commuting on M with respect to usual metric. But if
X is endowed with the discrete metric d, then d(STx, TSx) = 1 = d(Sx, Tx)
for x > 1. Thus the pair (S, T ) is weakly commuting on M with respect to
discrete metric.

Existence of fixed point has been used at many fields in approximation the-
ory. Number of results exist in the literature where fixed point theorems are
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used to prove the existence of best approximation(see in [1, 3, 4, 7, 8, 11, 12,
16]).

Meinardus [7] was the first to employ a fixed point theorem of Schauder to
establish the existence of an invariant approximation. Further, Brosowski [3]
obtained a celebrated result and generalized the Meinardus’s result. Later,
several results [4, 11, 16] have been proved in the direction of Brosowski [3]. In
the year 1988, Sahab et al. [8] extended the result of Hicks and Humpheries [4]
and Singh [11] by considering one linear and the other nonexpansive mappings.
Al-Thagafi [1] generalized result of Sahab at el. [8] and proved some results on
invariant approximations for commuting mappings. The introduction of non-
commuting maps to this area, Shahzad [9, 10] further extended Al-Thagafi’s
results and obtained a number of results regarding invariant approximation.

Recently, using compatible maps Jungck and Hussain [6] unified, and gener-
alized above results in normed spaces or Banach spaces. Here it is important to
remark that Takahashi [17] introduced the notion of convex metric space and
studied the fixed point theory for nonexpansive mappings in such a setting.
This idea was utilized in 1992 by Beg et al. [2] to prove existence of fixed point
and then to apply it for proving existence of best approximant for relatively
contractive commuting mappings. In this way, they generalized the result of
Sahab et al. [8] and others.

Attempt has been made to find existence results on common fixed point to
generalize S-nonexpansive subcompatible maps in the setup of convex metric
space which is further applied to prove some invariant approximation results.
In this way, results of Jungck and Hussain [6] are unified, and generalized with
the aid of more general class of noncommuting mappings instead of compatible
mappings in convex metric space and also results of Beg et al. [2] are generalized
for generalize S-contractive noncommuting mappings, incidently, results of Al-
Thagafi [1], Brosowski [3], Meinardus [7], Sahab et al. [8] and Singh [11, 12]
have also been extended by considering Ciric’s contraction type condition and
more general class of noncommuting mappings in convex metric spaces.

2. Main results

The following result would also be used in the sequel:

Theorem 2.1. [6, Theorem 2.1] Let M be a subset of a metric space (X, d),
and T and S be weakly compatible self mappings of M . Assume that clT (M) ⊂
S(M), clT (M) is complete, and T and S satisfy for all x, y ∈M and 0 ≤ h < 1,

d(Tx, Ty) ≤ hmax{d(Sx, Sy), d(Tx, Sx), d(Ty, Sy), d(Ty, Sx), d(Tx, Sy)}.
(2.1)

Then M ∩ F(T ) ∩ F(S) is a singleton.

First, a more general result in common fixed point theory for more general
class of noncommuting mappings is presented below:
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Theorem 2.2. Let M be a nonempty p-starshaped subset of a convex met-
ric space X satisfying property (I). Suppose T and S are subcompatible self-
mappings of M such that clT (M) ⊂ S(M), and S is affine with p ∈ F(S). If
T is continuous and T and S satisfy, for all x, y ∈M ,

d(Tx, Ty) ≤ max{d(Sx, Sy), d(seg[Tx, p], Sx), d(seg[Ty, p], Sy),
d(seg[Ty, p], Sx), d(seg[Tx, p], Sy)}, (2.2)

then F(T ) ∩ F(S) 6= ∅, provided one of the following conditions holds;
(1) clT (M) is compact and S is continuous,
(2) M is complete, F(S) is bounded and T is a compact map,
(3) X is complete, M is weakly compact, S is weakly continuous and (S−T )

is demiclosed at 0,
(4) X is complete, M is weakly compact, T is completely continuous and

S is continuous.

Proof. Choose a sequence {kn} ⊂ (0, 1) with kn → 1 as n → ∞. Define for
each n ≥ 1 and for all x ∈M , a mapping Tn by

Tnx = W (p, Tx, kn).

Then each Tn is a self-mapping of M and for each n, clTn(M) ⊂ S(M) from
the affine of S, p ∈ F(S) and clT (M) ⊂ S(M). The subcompatibility of the
pair (S, T ), affinity of S and property (I) imply that

0 ≤ lim
n
d(TnSxm, STnxm)

= d(W (p, TSx, kn), SW (p, Ty, kn))

= d(W (p, TSx, kn),W (p, STy, kn))

≤ lim
m
knd(TSxm, STxm)

= 0

for any {xm} ⊂ M with limm Tnxm = limm Sxm = t ∈ M . Thus (Tn, S)
is compatible and hence weakly compatible on M for each n. Also, by the
property (I),

d(Tnx, Tny) = d(W (p, Tx, kn),W (p, Ty, kn))

≤ knd(Tx, Ty)

≤ kn max{d(Sx, Sy), d(seg[Tx, p], Sx), d(seg[Ty, p], Sy),

d(seg[Ty, p], Sx), d(seg[Tx, p], Sy)}
≤ kn max{d(Sx, Sy), d(Tnx, Sx), d(Tny, Sy),

d(Tny, Sx), d(Tnx, Sy)},

that is,

d(Tnx, Tny) ≤ kn max{d(Sx, Sy), d(Tnx, Sx), d(Tny, Sy), d(Tny, Sx), d(Tnx, Sy)}

for all x, y ∈M. Now, we prove the each case.
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(1) Since clT (M) is compact, clTn(M) is also compact. By Theorem 2.1,
for each n ≥ 1, there exists yn ∈ M such that yn = Syn = Tnyn.
The compactness of clT (M) implies that there exists a subsequence
{Tym} of {Tyn} such that Tym → y as m → ∞. Then the definition
of Tmym implies ym → y, so by the continuity of T and S we have
y ∈ F(T ) ∩ F(S). Thus F(T ) ∩ F(S) 6= ∅.

(2) As in (1), there is a unique yn ∈ M such that yn = Tnyn = Syn.
As T is compact and {yn} being in F(S) is bounded so {Tyn} has
a subsequence {Tym} such that Tym → y as m → ∞. Then the
definition of Tmym implies ym → y, so by the continuity of T and S we
have y ∈ F(T ) ∩ F(S). Thus F(T ) ∩ F(S) 6= ∅.

(3) As in (1) there exists yn ∈ M such that yn = Syn = Tnyn. Since
M is weakly compact, we can find a subsequence {ym} of {yn} in M
converging weakly to y ∈M as m→∞ and as S is weakly continuous
so Sy = y. By (3) d(Sym, Tym) → 0 as m → ∞. The demiclosedness
of (S − T ) at 0 implies that Sy = Ty. Thus F(T ) ∩ F(S) 6= ∅.

(4) As in (3), we can find a subsequence {ym} of {yn} in M converging
weakly to y as m→∞. Since T is completely continuous, Tym → Ty
as m → ∞. Since kn → 1, ym = Tmym = W (p, Tym, km) → Ty as
m → ∞. Thus Tym → T 2y as m → ∞ and consequently T 2y = Ty
implies that Tw = w, where w = Ty. Also, since Sym = ym → Ty = w,
using the continuity of S and the uniqueness of the limit, we have
Sw = w. Hence F(T ) ∩ F(S) 6= ∅.

�

Following are the immediately consequences from Theorem 2.2.

Corollary 2.3. Let M be a p-starshaped subset of a convex metric space X
satisfying property (I), and T and S continuous self-maps of M . Suppose that
S is affine with p ∈ F(S), clT (M) ⊂ S(M) and clT (M) is compact. If the
pair (T, S) is R-subweakly commuting and satisfies (2.2) for all x, y ∈M , then
F(T ) ∩ F(S) 6= ∅.

Corollary 2.4. Let M be a p-starshaped subset of a convex metric space X
satisfying property (I), and T and S continuous self-maps of M . Suppose that
S is affine with p ∈ F(S), clT (M) ⊂ S(M) and clT (M) is compact. If the
pair (T, S) is R-subcompatible, and T is S-nonexpansive for all x, y ∈M , then
F(T ) ∩ F(S) 6= ∅.

As an application of Theorem 2.2, the following are more general results
in invariant approximations theory with the aid of more general class of non-
commuting, say, subcompatible mappings in the frame work of convex metric
space:

Theorem 2.5. Let X be a convex metric space satisfying property (I) and
T, S : X → X. Let M be a subset of X such that T (∂M) ⊆ M and x0 ∈



COMMON FIXED POINTS AND INVARIANT APPROXIMATIONS 45

F(T )∩F(S). Suppose S is affine on PM (x0), p ∈ F(S), PM (x0) is closed and
p-starshaped, S(PM (x0)) = PM (x0), and clT (PM (x0)) is compact. If the pair
(T, S) is continuous, subcompatible and satisfies for all x ∈ PM (x0) ∪ {x0}

d(Tx, Ty) ≤

 d(Sx, Sx0) if y = x0,
max{d(Sx, Sy), d(seg[Tx, p], Sx), d(seg[Ty, p], Sy),
d(seg[Ty, p], Sx), d(seg[Tx, p], Sy)}, if y ∈ PM (x0),

(2.3)

then PM (x0) ∩ F(T ) ∩ F(S) 6= ∅.

Proof. Let y ∈ PM (x0). Then y ∈ ∂M and so Ty ∈M , because T (∂M) ⊆M .
Now since Tx0 = x0 = Sx0, we have

d(Ty, x0) = d(Ty, Tx0) ≤ d(Sy, Sx0) = d(Sy, x0) = d(x0,M).

This shows that Ty ∈ PM (x0). Consequently, T (PM (x0)) ⊆ PM (x0) = S(PM (x0)).
Now Theorem 2.2 guarantees that

PM (x0) ∩ F(T ) ∩ F(S) 6= ∅.
�

Define
CS

M (x0) = {x ∈M : Sx ∈ PM (x0)}
and

DS
M (x0) = PM (x0) ∩ CS

M (x0).

Theorem 2.6. Let X be a convex metric space satisfying property (I) and
T, S : X → X. Let M be a subset of X such that T (∂M) ⊆M and x0 ∈ F(T )∩
F(S). Suppose S is affine on D∗ = DS

M (x0), p ∈ F(S), D∗ is compact and
p-starshaped, S(D∗) = D∗, S is nonexpansive on PM (x0) ∪ {x0} and clT (D∗)
is compact. If the pair (T, S) is continuous, subcompatible on D∗ and T and S
satisfy for all x ∈ D∗ ∪ {x0}

d(Tx, Ty) ≤

 d(Sx, Sx0) if y = x0,
max{d(Sx, Sy), d(seg[Tx, p], Sx), d(seg[Ty, p], Sy),
d(seg[Ty, p], Sx), d(seg[Tx, p], Sy)}, if y ∈ D∗,

(2.4)

then PM (x0) ∩ F(T ) ∩ F(S) 6= ∅.

Proof. First, we show that T is a selfmap on D∗, i.e., T : D∗ → D∗. Let
y ∈ D∗. Then Sy ∈ D∗, since S(D∗) = D∗. By the definition of D∗, y ∈ ∂M .
Also Ty ∈M , since T (∂M) ⊆M . Now since Tx0 = x0 = Sx0,

d(Ty, x0) = d(Ty, Tx0) ≤ d(Sy, Sx0).

As Sx0 = x0,
d(Ty, Tx0) ≤ d(Sy, x0) = d(x0,M),

since Sy ∈ PM (x0). This implies that Ty is also closest to x0, so Ty ∈ PM (x0).
Since S is nonexpansive on PM (x0) ∪ {x0},
d(STy, x0) = d(STy, Sx0) ≤ d(Ty, x0) = d(Ty, Tx0) ≤ d(Sy, Sx0) = d(Sy, x0).
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Thus, STy ∈ PM (x0). This implies that Ty ∈ CS
M (x0) and hence Ty ∈ D∗. So

T and S are selfmaps on D∗. Hence, all the condition of the Theorem 2.2 are
satisfied. Thus, there exists z ∈ PM (x0) such that z = Sz = Tz. �

Theorem 2.7. Let X be a convex metric space satisfying property (I) and
T, S : X → X. Let M be a subset of X such that T (∂M ∩ M) ⊆ M and
x0 ∈ F(T ) ∩ F(S). Suppose S is linear on D∗ = DS

M (x0), p ∈ F(S), D∗ is
compact and p-starshaped, S(D∗) = D∗, S is nonexpansive on PM (x0)∪ {x0},
and clT (D∗) is compact. If the pair (T, S) is continuous, subcompatible on D∗

and T and S satisfy (2.4) for all x ∈ D∗∪{x0}, then PM (x0)∩F(T )∩F(S) 6= ∅.

Proof. Let x ∈ D∗. Then, x ∈ PM (x0) and hence d(x, x0) = d(x0,M). Note
that for any k ∈ (0, 1),

d(W (x0, x, k), x0) = d(W (x0, x, k),W (x0, x0, k)) ≤ kd(x, x0) < d(x0,M).

It follows that the line segment {W (x0, x, k) : 0 < k < 1} and the set M
are disjoint. Thus x is not in the interior of M and so x ∈ ∂M ∩M. Since
T (∂M ∩M) ⊂ M, Tx must be in M . Along with the lines of the proof of
Theorem 2.6, we have the result. �

Remark 2.8. It is observed that S(PM (x0)) ⊂ PM (x0) implies PM (x0) ⊂ D∗

and hence D∗ = PM (x0). Consequently, Theorem 2.6, 2.7 remain valid when
D∗ = PM (x0).

Remark 2.9. Theorem 2.2 - Theorem 2.7 generalize the results of Jungck and
Hussain [6, Theorem 2.3 - Threom 2.5] in the sense that the more generalized
noncommuting mappings, that is, subcompatible mappings have been used in
the frame work of convex metric space in place of compatible mappings in
normed spaces or Banach spaces.

Remark 2.10. Similarly, all other results of Jungck and Hussain [6, Theorem 2.9
- Theorem 2.12] hold by using subcompatible mappings instead of compatible
mappings.

Remark 2.11. Theorem 2.5 - Theorem 2.7 contain Theorem 6 of Beg [2] in
the sense that the more generalized contractive noncommuting mappings (i.e.,
subcompatible mappings) and generalized relatively nonexpansive maps have
been used in place of relatively contractive commuting maps.

Remark 2.12. Theorem 2.2 contains [1, Theorem 2.2] and [10, Theorem 2.2].

Remark 2.13. Theorem 2.5 - Theorem 2.7 contain Theorem 3.2 of Al - Tha-
gafi [1], Theorem 3 of Sahab, Khan and Sessa [8] and Singh [11, 12] in the sense
that the more generalized noncommuting mappings(subcompatible mappings)
and generalized relatively nonexpansive maps have been used in the frame work
of convex metric space in place of relatively nonexpansive commuting maps.
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