DOI QR코드

DOI QR Code

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF INVARIANT (α1, α2)-METRICS ON SPHERES

  • Huihui, An (School of Mathematics Liaoning Normal University) ;
  • Zaili, Yan (School of Mathematics and Statistics Ningbo University) ;
  • Shaoxiang, Zhang (College of Mathematics and Systems Science Shandong University of Science and Technology)
  • Received : 2021.11.17
  • Accepted : 2022.10.11
  • Published : 2023.01.31

Abstract

Geodesic orbit spaces are homogeneous Finsler spaces whose geodesics are all orbits of one-parameter subgroups of isometries. Such Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov volume comparison theorem. In this paper, we obtain a complete description of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it is Sp(n + 1)Sp(1)-invariant. As an interesting consequence, we find infinitely many Finsler spheres with vanishing S-curvature which are not geodesic orbit spaces.

Keywords

Acknowledgement

We are deeply grateful to the reviewers of this paper for very careful reading and useful suggestions.

References

  1. A. Arvanitoyeorgos, Homogeneous manifolds whose geodesics are orbits. Recent results and some open problems, Irish Math. Soc. Bull. No. 79 (2017), 5-29.
  2. D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1268-3
  3. V. Berestovskii and Y. Nikonorov, Riemannian manifolds and homogeneous geodesics, Springer Monographs in Mathematics, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-56658-6
  4. J. Berndt, O. Kowalski, and L. Vanhecke, Geodesics in weakly symmetric spaces, Ann. Global Anal. Geom. 15 (1997), no. 2, 153-156. https://doi.org/10.1023/A:1006565909527
  5. J. Berndt and L. Vanhecke, Geometry of weakly symmetric spaces, J. Math. Soc. Japan 48 (1996), no. 4, 745-760. https://doi.org/10.2969/jmsj/04840745
  6. A. Borel, Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc. 55 (1949), 580-587. https://doi.org/10.1090/S0002-9904-1949-09251-0
  7. S. Deng, On the classification of weakly symmetric Finsler spaces, Israel J. Math. 181 (2011), 29-52. https://doi.org/10.1007/s11856-011-0002-z
  8. S. Deng, Homogeneous Finsler spaces, Springer Monographs in Mathematics, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-4244-8
  9. S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math. 207 (2002), no. 1, 149-155. https://doi.org/10.2140/pjm.2002.207.149
  10. S. Deng and Z. Hou, Invariant Finsler metrics on homogeneous manifolds, J. Phys. A 37 (2004), no. 34, 8245-8253. https://doi.org/10.1088/0305-4470/37/34/004
  11. S. Deng and Z. Hou, Weakly symmetric Finsler spaces, Commun. Contemp. Math. 12 (2010), no. 2, 309-323. https://doi.org/10.1142/S0219199710003816
  12. S. Deng and M. Xu, (α1, α2)-metrics and Clifford-Wolf homogeneity, J. Geom. Anal. 26 (2016), no. 3, 2282-2321. https://doi.org/10.1007/s12220-015-9628-0
  13. C. S. Gordon, Homogeneous Riemannian manifolds whose geodesics are orbits, in Topics in geometry, 155-174, Progr. Nonlinear Differential Equations Appl., 20, Birkhauser Boston, Boston, MA, 1996.
  14. Z. Hu and S. Deng, Homogeneous Randers spaces with isotropic S-curvature and positive flag curvature, Math. Z. 270 (2012), no. 3-4, 989-1009. https://doi.org/10.1007/s00209-010-0836-9
  15. O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. B (7) 5 (1991), no. 1, 189-246.
  16. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 (2007), no. 5, 1421-1433. https://doi.org/10.1016/j.geomphys.2006.11.004
  17. D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math. (2) 44 (1943), 454-470. https://doi.org/10.2307/1968975
  18. Yu. G. Nikonorov, Geodesic orbit Riemannian metrics on spheres, Vladikavkaz. Mat. Zh. 15 (2013), no. 3, 67-76.
  19. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87.
  20. Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), no. 2, 306-328. https://doi.org/10.1006/aima.1997.1630
  21. M. Xu, Geodesic orbit spheres and constant curvature in Finsler geometry, Differential Geom. Appl. 61 (2018), 197-206. https://doi.org/10.1016/j.difgeo.2018.07.002
  22. Z. Yan, Some Finsler spaces with homogeneous geodesics, Math. Nachr. 290 (2017), no. 2-3, 474-481. https://doi.org/10.1002/mana.201500326
  23. Z. Yan and S. Deng, Finsler spaces whose geodesics are orbits, Differential Geom. Appl. 36 (2014), 1-23. https://doi.org/10.1016/j.difgeo.2014.06.006
  24. L. Zhang and M. Xu, Standard homogeneous (α1, α2)-metrics and geodesic orbit property, Math. Nachr. 295 (2022), no. 7, 1443-1453. https://doi.org/10.1002/mana.201900536
  25. S. Zhang and Z. Yan, Geodesic orbit Randers metrics on spheres, Adv. Geom. 21 (2021), no. 2, 273-280. https://doi.org/10.1515/advgeom-2020-0015