Acknowledgement
We are deeply grateful to the reviewers of this paper for very careful reading and useful suggestions.
References
- A. Arvanitoyeorgos, Homogeneous manifolds whose geodesics are orbits. Recent results and some open problems, Irish Math. Soc. Bull. No. 79 (2017), 5-29.
- D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1268-3
- V. Berestovskii and Y. Nikonorov, Riemannian manifolds and homogeneous geodesics, Springer Monographs in Mathematics, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-56658-6
- J. Berndt, O. Kowalski, and L. Vanhecke, Geodesics in weakly symmetric spaces, Ann. Global Anal. Geom. 15 (1997), no. 2, 153-156. https://doi.org/10.1023/A:1006565909527
- J. Berndt and L. Vanhecke, Geometry of weakly symmetric spaces, J. Math. Soc. Japan 48 (1996), no. 4, 745-760. https://doi.org/10.2969/jmsj/04840745
- A. Borel, Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc. 55 (1949), 580-587. https://doi.org/10.1090/S0002-9904-1949-09251-0
- S. Deng, On the classification of weakly symmetric Finsler spaces, Israel J. Math. 181 (2011), 29-52. https://doi.org/10.1007/s11856-011-0002-z
- S. Deng, Homogeneous Finsler spaces, Springer Monographs in Mathematics, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-4244-8
- S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math. 207 (2002), no. 1, 149-155. https://doi.org/10.2140/pjm.2002.207.149
- S. Deng and Z. Hou, Invariant Finsler metrics on homogeneous manifolds, J. Phys. A 37 (2004), no. 34, 8245-8253. https://doi.org/10.1088/0305-4470/37/34/004
- S. Deng and Z. Hou, Weakly symmetric Finsler spaces, Commun. Contemp. Math. 12 (2010), no. 2, 309-323. https://doi.org/10.1142/S0219199710003816
- S. Deng and M. Xu, (α1, α2)-metrics and Clifford-Wolf homogeneity, J. Geom. Anal. 26 (2016), no. 3, 2282-2321. https://doi.org/10.1007/s12220-015-9628-0
- C. S. Gordon, Homogeneous Riemannian manifolds whose geodesics are orbits, in Topics in geometry, 155-174, Progr. Nonlinear Differential Equations Appl., 20, Birkhauser Boston, Boston, MA, 1996.
- Z. Hu and S. Deng, Homogeneous Randers spaces with isotropic S-curvature and positive flag curvature, Math. Z. 270 (2012), no. 3-4, 989-1009. https://doi.org/10.1007/s00209-010-0836-9
- O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. B (7) 5 (1991), no. 1, 189-246.
- D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 (2007), no. 5, 1421-1433. https://doi.org/10.1016/j.geomphys.2006.11.004
- D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math. (2) 44 (1943), 454-470. https://doi.org/10.2307/1968975
- Yu. G. Nikonorov, Geodesic orbit Riemannian metrics on spheres, Vladikavkaz. Mat. Zh. 15 (2013), no. 3, 67-76.
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87.
- Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), no. 2, 306-328. https://doi.org/10.1006/aima.1997.1630
- M. Xu, Geodesic orbit spheres and constant curvature in Finsler geometry, Differential Geom. Appl. 61 (2018), 197-206. https://doi.org/10.1016/j.difgeo.2018.07.002
- Z. Yan, Some Finsler spaces with homogeneous geodesics, Math. Nachr. 290 (2017), no. 2-3, 474-481. https://doi.org/10.1002/mana.201500326
- Z. Yan and S. Deng, Finsler spaces whose geodesics are orbits, Differential Geom. Appl. 36 (2014), 1-23. https://doi.org/10.1016/j.difgeo.2014.06.006
- L. Zhang and M. Xu, Standard homogeneous (α1, α2)-metrics and geodesic orbit property, Math. Nachr. 295 (2022), no. 7, 1443-1453. https://doi.org/10.1002/mana.201900536
- S. Zhang and Z. Yan, Geodesic orbit Randers metrics on spheres, Adv. Geom. 21 (2021), no. 2, 273-280. https://doi.org/10.1515/advgeom-2020-0015