
Bull. Korean Math. Soc. 60 (2023), No. 1, pp. 33–46

https://doi.org/10.4134/BKMS.b210835

pISSN: 1015-8634 / eISSN: 2234-3016

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF

INVARIANT (α1, α2)-METRICS ON SPHERES

Huihui An, Zaili Yan, and Shaoxiang Zhang

Abstract. Geodesic orbit spaces are homogeneous Finsler spaces whose

geodesics are all orbits of one-parameter subgroups of isometries. Such
Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov

volume comparison theorem. In this paper, we obtain a complete descrip-
tion of invariant (α1, α2)-metrics on spheres with vanishing S-curvature.

Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on

spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on
S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if

and only if it is Sp(n+ 1)Sp(1)-invariant. As an interesting consequence,

we find infinitely many Finsler spheres with vanishing S-curvature which
are not geodesic orbit spaces.

1. Introduction

The notion of S-curvature was introduced by Z. Shen in [20] in his study
of volume comparison in Finsler geometry. S-curvature is an important non-
Riemannian quantity in Finsler geometry, or in other words, any Riemann-
ian manifold has vanishing S-curvature. Z. Shen showed that the Bishop-
Gromov volume comparison theorem holds for Finsler spaces with vanishing
S-curvature. Therefore, it is significant to characterize Finsler spaces with
vanishing S-curvature.

Fortunately, there is a special class of Finsler spaces called geodesic orbit
space in homogeneous Finsler geometry satisfying this property. Geodesic orbit
space is a Finsler space whose geodesics are all orbits of one-parameter sub-
groups of isometries. More exactly, we call a Riemannian (Finsler) metric F on
a homogeneous space G/H a geodesic orbit metric with respect to G if every
geodesic of (G/H,F ) is an orbit of a one-parameter subgroup of G. This termi-
nology was first introduced by O. Kowalski and L. Vanhecke [15], who initiated
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a systematic study of such spaces. There is extensive literature on Riemannian
geodesic orbit spaces and we refer the readers to [1, 3, 13] and the references
therein. In 2014, Z. Yan and S. Deng [23] generalized some geometric results
on Riemannian geodesic orbit spaces to the Finslerian setting. Moreover, they
obtained a sufficient and necessary condition for a Randers space to be a geo-
desic orbit space. Later, in [22], Z. Yan studied geodesic orbit (α, β)-spaces and
gave many non-Riemannian geodesic orbit spaces. Recently, in [24], L. Zhang
and M. Xu studied standard geodesic orbit (α1, α2)-spaces and found some
new examples of non-Riemannian geodesic orbit Finsler spaces which are not
weakly symmetric. Meanwhile, we should mention that, for some very special
Finsler spaces, such as symmetric spaces and weakly symmetric spaces [11] are
all geodesic orbit spaces.

The goal of this paper is to study the S-curvature and geodesic orbit property
of invariant (α1, α2)-metrics on spheres. Spheres can be viewed as a special class
of homogeneous spaces. At first, A. Borel in [6] and D. Montgomery and H.
Samelson in [17] classified the compact connected Lie groups that admit an
effective transitive action on spheres. Recently, Y. Nikonorov in [18] studied
the geodesic orbit Riemannian metrics on spheres. In this paper, he gave a
complete classification of geodesic orbit metrics on Riemannian spheres and
constructed some explicit geodesic vectors. He mainly showed a Sp(n + 1)-
invariant Riemannian metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit
with respect to Sp(n+ 1) if and only if it is Sp(n+ 1)Sp(1)-invariant. Later, in
independent works, M. Xu in [21] and S. Zhang and Z. Yan in [25] generalized
Y. Nikonorov’s classification of geodesic orbit Riemannian metrics on spheres
to Finslerian setting. In [21], using a geometric method, the author proved
a homogeneous Finsler metric on a sphere Sn with n > 1 is a geodesic orbit
metric if and only if its connected isometry group is not isomorphic to Sp(k) for
any k ≥ 1. By this result, he gave a classification of geodesic orbit metrics on
Finsler spheres. In [25], the authors classified geodesic orbit Randers spheres
with a more algebraic method, and obtained some explicit metrics and geodesic
vectors. By now, it is still unknown whether there exists a non-Riemannian
Finsler geodesic orbit metric on S4n+3 = Sp(n+1)/Sp(n) with geodesic vectors
all in sp(n+ 1) or not, here sp(n+ 1) denotes the Lie algebra of Sp(n+ 1). In
our paper, we first obtain a complete description of invariant (α1, α2)-metrics
on spheres with vanishing S-curvature. Based on this result, we find there are
infinitely many non-Riemannian geodesic orbit (α1, α2)-metrics on S4n+3 =
Sp(n + 1)/Sp(n) with its geodesic vectors all in sp(n + 1) by showing the
following

Theorem 1.1. A Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n +
1)/Sp(n) is geodesic orbit with respect to Sp(n+ 1) if and only if it is Sp(n+
1)Sp(1)-invariant.

Remark 1.2. We should mention that, the “only if” part of Theorem 1.1 is a
special case of Corollary 4.3 in [21].
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In Sections 2, 3 and 4, we present some facts about Finsler spaces, S-
curvature, geodesic orbit spaces and weakly symmetric spaces, for more details
we refer the readers to [2] and [8]. In Section 5, we obtain a complete descrip-
tion of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. In
Section 6, we mainly prove Theorem 1.1.

2. Finsler spaces and S-curvature

Recall a Finsler metric on a smooth manifold M is a real continuous function
F : TM → [0,+∞) such that

1. F is C∞ on the slit tangent bundle TM \ {0};
2. The restriction of F to any TxM , x ∈M , is a Minkowski norm. Namely,

(1) F (u) ≥ 0,∀u ∈ TxM ;
(2) F (λu) = λF (u),∀λ > 0;
(3) For any basis ε1, ε2, . . . , εn of TxM , write F (y) = F (y1, y2, . . . , yn) for

y =
∑n
i=1 y

iεi. The Hessian matrix

(gij(y)) :=

([1

2
F 2
]
yiyj

)
is positive definite at any point of TxM \ {0}.

Definition 2.1 ([12], Definition 3.8). For a Riemannian metric α on a manifold
M , an α-orthogonal decomposition TM = V1 ⊕ V2 and αi = α|Vi , a Finsler
metric is called an (α1, α2)-metric if it can be presented as

F (x, y) = f(α(x, y1), α(x, y2)), ∀y = y1 + y2 ∈ TxM with yi ∈ Vi, i = 1, 2,

for some positive smooth function f(·, ·).

It is easily seen that an (α1, α2)-metric F is Riemannian if and only if it is

defined by f(s, t) =
√
as2 + bt2 for some positive constants a and b. There are

lots of non-Riemannian (α1, α2)-metrics. For example, one can take

(∗) f(s, t) =

√
s2 + t2 + ε(s2k + t2k)

1
k ,

where ε is a positive number and k ≥ 2 is a positive integer (see [23], Section
5).

An (α1, α2)-metric can also be expressed by F = αϕ(α2/α), where ϕ(θ) is
positive and smooth for θ ∈ (0, 1). If F = αϕ(α2/α) is a regular (α1, α2)-
metric, then ϕ(θ) satisfies

ϕ(θ)− θϕ′(θ) > 0, ϕ(θ)− (θ − θ−1)ϕ′(θ) > 0

for θ ∈ (0, 1). See Lemma 2.4 in [24] for a proof.
We now recall the notion of S-curvature of a Finsler space. Let V be an

n-dimensional real vector space and F be a Minkowski norm on V . For a basis
{εi} of V , let

σF =
Vol(Bn)

Vol{(yi) ∈ Rn |F (
∑
i y
iεi) < 1}

,



36 H. AN, Z. YAN, AND S. ZHANG

where Vol means the volume of a subset in the standard Euclidean space Rn
and Bn is the open ball of radius 1. This quantity is generally dependent on
the choice of the basis {εi}. But it is easily seen that

τ(y) = ln

√
det(gij(y))

σF
, y ∈ V \ {0}

is independent of the choice of the basis. The quantity τ = τ(y) is called the
distortion of (V, F ).

Definition 2.2 ([20]). Let (M,F ) be an n-dimensional Finsler space and let
τ(x, y) be the distortion of the Minkowski norm Fx on TxM . For any y ∈
TxM \ {0}, let σ(t) be the geodesic with σ(0) = x and σ̇(0) = y. Then the
quantity

S(x, y) =
d

dt
[τ(σ(t), σ̇(t))]|t=0

is called the S-curvature of the Finsler space (M,F ).

3. Geodesic orbit spaces

Let (M,F ) be a connected Finsler space. Then the full group of isometries of
(M,F ), denoted by I(M,F ), is a Lie transformation group on M with respect
to the compact-open topology [9]. The space (M,F ) is called homogeneous if
the action of I(M,F ) on M is transitive. In this case, M can be written as
a coset space G/H, where G is a Lie subgroup of I(M,F ) acting transitively
on M and H is the isotropy subgroup of G at a point p ∈ M . Let g, h be
the Lie algebras of G and H, respectively. The reductive decomposition of
the Lie algebras is g = h + m with [h,m] ⊆ m, where m is a subspace of g.
The subspace m can be identified with the tangent space Tp(G/H) at p = eH

via the mapping X 7→ d
dt |t=0 exp(tX) · p. The G-invariant Finsler metric F

on M = G/H is one-to-one correspondence to the Ad(H)-invariant Minkowski
norm (still denoted by F ) on m [10].

Definition 3.1 ([23]). Let (M,F ) be a Finsler space and G be a subgroup
of I(M,F ) the full group of isometries. The Finsler space (M,F ) is called a
Finsler geodesic orbit space with respect to G if every geodesic of (M,F ) is an
orbit of a one-parameter subgroup of G. That is, if γ is a geodesic through
p ∈ M , then there exists a vector X ∈ g such that γ(t) = exp(tX) · p. In this
case, X is called a geodesic vector.

For simplify, if G = I(M,F ), we call (M,F ) a Finsler geodesic orbit space
without saying G.

S. Deng [11] and D. Latifi [16] proved the following:

Theorem 3.2 ([11, 16]). Let (M,F ) be a Finsler geodesic orbit space. Then
the S-curvature of (M,F ) vanishes.
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From Definition 3.1, one easily sees that a homogeneous Finsler space (G/H,
F ) is a Finsler geodesic orbit space with respect toG if and only if the projection
of all geodesic vectors cover the set TpM \ {0} if and only if for any non-zero
X ∈ m, there exists A ∈ h such that X +A is a geodesic vector.

Concerning geodesic vectors, one has the following:

Lemma 3.3 ([15, 16]). A vector X ∈ g \ {0} is a geodesic vector of (G/H,F )
if and only if

gXm
(Xm, [X,Z]m) = 0,∀Z ∈ m,

where the subscript m means the corresponding projection, and g is the funda-
mental tensor of F on m defined by

gy(u, v) =
∑
i,j

gij(y)uivj , ∀y 6= 0, u =
∑
i

uiεi, v =
∑
j

vjεj ∈ m,

{εi} is a basis of m.

Now we consider invariant (α1, α2)-metrics on the homogeneous space G/H.
According to Corollary 1.2 in [10], such metrics can be stated as follows. Let
| · |2 = 〈·, ·〉 be an Ad(H)-invariant inner product on m, m = p + q be an
Ad(H)-invariant 〈·, ·〉-orthogonal decomposition of m. Then the (α1, α2)-norm

F (X) = |X|ϕ(|Xq|/|X|), ∀X = Xp +Xq ∈ m \ {0}, Xp ∈ p, Xq ∈ q

defines a G-invariant (α1, α2)-metric on G/H. Conversely, the Ad(H)-invariant
Minkowski norm on m induced by a G-invariant (α1, α2)-metric can be ex-
pressed by this form for some 〈·, ·〉, p, q and ϕ.

Theorem 3.4 ([12], Theorem 4.3). Let F be an invariant non-Riemannian
(α1, α2)-metric on G/H. Then F has vanishing S-curvature if and only if

〈[X,Y ]m, X〉 = 〈[X,Y ]m, Y 〉 = 0, ∀X ∈ p, Y ∈ q.

Remark 3.5. From Theorem 3.4, we can see that the vanishing of S-curvature of
an invariant non-Riemannian (α1, α2)-metric on a homogeneous space does not
depend on the (α1, α2)-metric, it depends only on the underlying Riemannian
metric and the decomposition m = p + q. Recall that a naturally reductive
metric 〈·, ·〉 on m satisfies

〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉 = 0, ∀X,Y, Z ∈ m.

So every invariant (α1, α2)-metric induced by a naturally reductive metric must
have vanishing S-curvature.

From Lemma 3.3, the geodesic vectors of an invariant (α1, α2)-metric on a
homogeneous space G/H can be equivalently described by the following theo-
rem.

Theorem 3.6 ([24]). Assume X = Xh +Xm = Xh +Xp +Xq ∈ g is according
to the decomposition g = h + m = h + p + q, we have:
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(1) When Xm ∈ (p ∪ q) \ {0}, then X is a geodesic vector if and only if

〈[X,Z]m, Xm〉 = 0, ∀Z ∈ m.

(2) When Xm ∈ m \ (p ∪ q), then X is a geodesic vector if and only if

〈[X,Z]m, (ϕ(θ)− θϕ′(θ))Xp + (ϕ(θ)− (θ − θ−1)ϕ′(θ))Xq〉 = 0, ∀Z ∈ m,

where θ = |Xq|/|Xm| ∈ (0, 1).

4. Weakly symmetric metrics on spheres

The original definition of weakly symmetric Riemannian manifold was given
by A. Selberg in [19]. A connected Riemannian manifold (M,Q) is called weakly
symmetric if there exists a subgroup G of the full group I(M,Q) of isometries
such that G acts transitively on M and there exists an isometry f of (M,Q)
with f2 ∈ G and fGf−1 = G such that for every two points p, q ∈ M , there
exists an isometry g of (M,Q) satisfying g(p) = f(q) and g(q) = f(p). Later, in
[5], J. Berndt and L. Vanhecke obtained a simple geometrical characterization
of weakly symmetric Riemannian manifolds. Namely, a connected Riemannian
manifold (M,Q) is weakly symmetric if and only if for any two points p, q ∈M
there exists an isometry f of (M,Q) such that f(p) = q and f(q) = p. This
notion of weakly symmetric Riemannian manifold has been generalized to the
Finslerian setting by S. Deng.

Definition 4.1 ([11]). Let (M,F ) be a connected Finsler space and I(M,F )
be the full group of isometries. Then (M,F ) is called weakly symmetric if for
every two points p, q in M there exists an isometry σ ∈ I(M,F ) such that
σ(p) = q and σ(q) = p.

Weakly symmetric Finsler spaces were deeply studied by S. Deng, who
proved the following important results.

Theorem 4.2 ([7]). Let (M,F ) be a connected weakly symmetric Finsler space
and G be the full group of isometries of (M,F ). Then any G-invariant Finsler
metric on M must be weakly symmetric.

Theorem 4.3 ([4, 11]). A weakly symmetric Finsler space must be a Finsler
geodesic orbit space with respect to the full group of isometries.

We now study invariant (α1, α2)-metrics on spheres. The spheres can be
expressed by homogeneous spaces. In Table 1 we list all homogeneous spheres
G/H, where G is a compact connected Lie group with an effective action on
G/H. We also give the isotropy representations of the homogeneous spaces.
• Cases 1, 2 and 3. Since the isotropy representation is irreducible, every

(α1, α2)-metric on these three kinds of homogeneous spaces is Riemannian.
• Cases 4, 5 and 8. All invariant Finsler metrics are geodesic orbit metrics

and have vanishing S-curvature [21]. Notice that the isotropy representation is
not irreducible, so there exist invariant non-Riemannian (α1, α2)-metrics.
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Table 1. Invariant (α1, α2)-metrics on spheres.

G H dimG/H isotropy representation (α1, α2)-metric Cond.
1 SO(n+ 1) SO(n) n irreducible Riemannian n ≥ 1
2 G2 SU(3) 6 irreducible Riemannian
3 Spin(7) G2 7 irreducible Riemannian
4 SU(n+ 1) SU(n) 2n+ 1 m = m0 + m1 geodesic orbit n ≥ 2
5 U(n+ 1) U(n) 2n+ 1 m = m0 + m1 geodesic orbit n ≥ 1
6 Spin(9) Spin(7) 15 m = m1 + m2 weakly symmetric
7 Sp(n+ 1)Sp(1) Sp(n)Sp(1) 4n+ 3 m = m1 + m2 weakly symmetric n ≥ 1
8 Sp(n+ 1)U(1) Sp(n)U(1) 4n+ 3 m = m0 + m1 + m2 geodesic orbit n ≥ 1
9 Sp(n+ 1) Sp(n) 4n+ 3 m = m0 + m1 n ≥ 0

• Cases 6 and 7. They are weakly symmetric ([21], Section 3), hence all
invariant Finsler metrics are geodesic orbit metrics and have vanishing S-
curvature. Notice that the isotropy representation is not irreducible, so there
exist invariant non-Riemannian (α1, α2)-metrics.
• Case 9. This is a unique case that we should study in details. We deal with

this case in Sections 5 and 6. The isotropy representation is not irreducible,
there exist invariant non-Riemannian (α1, α2)-metrics. The Lie group pair
(Sp(n + 1),Sp(n)) is not a weakly symmetric pair, that is, there exists an
invariant Riemannian (Finsler) metric F on S4n+3 = Sp(n + 1)/Sp(n) such
that (Sp(n + 1)/Sp(n), F ) is not a weakly symmetric Riemannian (Finsler)
space. When n = 0, Sp(1)/{e} = S3, it follows from Lemma 3.3 that, all
Sp(1)-invariant Finsler metrics on S3 which are geodesic orbit with respect to
Sp(1), should be bi-invariant (see also Theorem 2.3 in [10]). Note also that the
family of Sp(n+ 1)-invariant Riemannian metrics on Sp(n+ 1)/Sp(n) (n ≥ 1)
is a 7-dimensional space. Y. Nikonorov [18] proved that a Sp(n+ 1)-invariant
Riemannian metric on S4n+3 = Sp(n+1)/Sp(n) is a geodesic orbit metric with
respect to Sp(n+ 1) if and only if it is Sp(n+ 1)Sp(1)-invariant.

5. Invariant (α1, α2)-metrics on spheres with vanishing S-curvature

In this section, we deal with the S-curvature of Sp(n+ 1)-invariant (α1, α2)-
metrics on S4n+3 = Sp(n+ 1)/Sp(n), n ≥ 0.

Let H = R + Ri + Rj + Rk be the field of quaternions, where i, j, k are the
quaternionic units in H. That is, ij = −ji = k, jk = −kj = i, ki = −ik = j,
ii = jj = kk = −1. For u = x0 + x1i + x2j + x3k ∈ H, x0, x1, x2, x3 ∈ R, define
Re(u) = x0 and ū = x0−x1i−x2j−x3k. In Lie algebra sp(n+1), denote by Gi
the matrix with

√
2 in the (i, i)-th entry, and zeros elsewhere, 1 ≤ i ≤ n+1. The

reductive decomposition of sp(n+1) is sp(n+1) = sp(n)+m = sp(n)+m0 +m1,
here m0 = RiG1 + RjG1 + RkG1,

m1 =

{(
0 α
−ᾱ′ 0

)
|α = (u1, u2, . . . , un) ∈ Hn

}
, ᾱ = (ū1, ū2, . . . , ūn).
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Then, up to a positive multiple, any Sp(n+ 1)-invariant Riemannian metric on
S4n+3 = Sp(n+ 1)/Sp(n) can be written as

g(t1,t2,t3)(X,Y ) = Re(ξη̄′) + t1x1y1 + t2x2y2 + t3x3y3,

where t1, t2, t3 > 0, X,Y ∈ m0 + m1 and

X = x1iG1 + x2jG1 + x3kG1 +

(
0 ξ
−ξ̄′ 0

)
,

Y = y1iG1 + y2jG1 + y3kG1 +

(
0 η
−η̄′ 0

)
.

Remark 5.1. Note that when t1 = t2 = t3 = 1, the underlying Riemann-
ian metric g(1,1,1) is the standard Riemannian metric on S4n+3 with constant
curvature and is invariant under SO(4(n + 1)). If t1 = t2 = t3 = t 6= 1,
then the Riemannian metrics g(t,t,t) are naturally reductive and invariant un-
der Sp(n)Sp(1). If ti = tj = 1 6= tk with (i, j, k) a cyclic permutation of
(1, 2, 3), the Riemannian metrics g(t1,t2,t3) are invariant under SU(2n+ 2) (and
U(2n + 2)). If ti = tj 6= 1 and ti 6= tk, then the Riemannian metrics g(t1,t2,t3)

are invariant under Sp(n)U(1), but not invariant under U(2n+ 2).

By a direct calculation (see also [14], p. 998), we have:

Proposition 5.2. For all X = x1iG1 + x2jG1 + x3kG1, Y = y1iG1 + y2jG1 +
y3kG1 ∈ m0, Z ∈ m1,

g(t1,t2,t3)([X,Y + Z]m, Y + Z)

= − 2
√

2[x1y2y3(t2 − t3)− x2y1y3(t1 − t3) + x3y1y2(t1 − t2)].

Now we start to classify Sp(n + 1)-invariant (α1, α2)-metrics on S4n+3 =
Sp(n+ 1)/Sp(n) with vanishing S-curvature. When n ≥ 1, by the symmetry of
p and q, we can assume m1 ⊆ q and p ⊆ m0 without losing generality, since the
action of sp(n) on m1 is irreducible. Let p0 be the orthogonal complement of
p in m0 with respect to the Riemannian metric g(t1,t2,t3), we have m0 = p + p0

and q = m1 +p0. Notice that the dimension of p is equal to 1, 2, 3, we will have
the following five cases.

(I) dim p = 1, p ∈ {RiG1,RjG1,RkG1}, q = p⊥ = m1 + p0.
(II) dim p = 1, p 6∈ {RiG1,RjG1,RkG1}, q = p⊥ = m1 + p0.

(III) dim p = 2, dim p0 = 1, p0 ∈ {RiG1,RjG1,RkG1}, q = p⊥ = m1 + p0.
(IV) dim p = 2, dim p0 = 1, p0 6∈ {RiG1,RjG1,RkG1}, q = p⊥ = m1 + p0.
(V) p = m0, q = m1, n ≥ 1.

When n = 0, we have m1 = {0}. In this case, the decomposition m0 = p+ q
can also be divided into the above cases (I)-(IV).

For case (I), we consider p = RiG1, the other cases are similar. Let X0 =
iG1 ∈ p, by Theorem 3.4 and Proposition 5.2, for all Y = y2jG1 + y3kG1 ∈ q
we can see

0 = g(t1,t2,t3)([X0, Y ]m, Y ) = −2
√

2y2y3(t2 − t3).
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This shows t2 = t3 and hence g(t1,t2,t3)|p0
= g(t,t,t)|p0

for some t ∈ R. In
this case, the Riemannian metric g(t1,t2,t3) is Sp(n + 1)U(1)-invariant and the
(α1, α2)-metric F induced by this Riemannian metric is also Sp(n + 1)U(1)-
invariant. Hence F is geodesic orbit and has vanishing S-curvature.

For case (II). Let X0 = x1iG1 + x2jG1 + x3kG1 ∈ p. Then at least two
of x1, x2, x3 are non-zero. By Theorem 3.4 and Proposition 5.2 again, for all
Y = y1iG1 + y2jG1 + y3kG1 ∈ m0, we have

0 = g(t1,t2,t3)([X0, Y ]m, Y )

= −2
√

2[x1y2y3(t2 − t3)− x2y1y3(t1 − t3) + x3y1y2(t1 − t2)].

This shows x1(t2 − t3) = x2(t1 − t3) = x3(t1 − t2) = 0, thus t1 = t2 = t3. In
this case, the Riemannian metric g(t1,t2,t3) is Sp(n+ 1)Sp(1)-invariant and the
(α1, α2)-metric F induced by this Riemannian metric is Sp(n+1)U(1)-invariant.
Hence F is geodesic orbit and has vanishing S-curvature.

For case (III), by the same argument as in case (I), we easily obtain that F
has vanishing S-curvature if and only if g(t1,t2,t3)|p = g(t,t,t)|p for some t ∈ R.
In this case, both g(t1,t2,t3) and F are Sp(n + 1)U(1)-invariant and geodesic
orbit.

For case (IV), by the same argument as in case (II), we easily obtain that F
has vanishing S-curvature if and only if g(t1,t2,t3) = g(t,t,t) for some t ∈ R. In
this case, g(t1,t2,t3) = g(t,t,t) is Sp(n+ 1)Sp(1)-invariant and weakly symmetric,
F is Sp(n+ 1)U(1)-invariant and geodesic orbit.

For case (V). Let X = x1iG1 + x2jG1 + x3kG1 ∈ m0, Y =
(

0 η
−η̄′ 0

)
∈ m1.

Then we have

[X,Y ] =

(
0

√
2(x1i + x2j + x3k)η√

2η̄′(x1i + x2j + x3k) 0

)
∈ m1.

As a result,

g(t1,t2,t3)([X,Y ]m, Y ) = 0, g(t1,t2,t3)([X,Y ]m, X) = 0.

According to Theorem 3.4, for any t1, t2, t3 > 0, the (α1, α2)-metrics induced
by g(t1,t2,t3) on S4n+3 = Sp(n+ 1)/Sp(n) have vanishing S-curvature.

Summarize the above results we have the following conclusion.

Theorem 5.3. Let F be an Sp(n + 1)-invariant non-Riemannian (α1, α2)-
metric on S4n+3 = Sp(n + 1)/Sp(n) constructed by the Riemannian metric
g(t1,t2,t3) and decomposition m = p + q with p ⊆ m0, m1 ⊆ q, we have:

(1) When dim p = 1, p ∈ {RiG1,RjG1,RkG1}, q = p⊥ = m1 + p0. F has
vanishing S-curvature if and only if g(t1,t2,t3)|p0

= g(t,t,t)|p0
for some t ∈ R. In

this case, both g(t1,t2,t3) and F are Sp(n+ 1)U(1)-invariant and geodesic orbit.

(2) When dim p = 1, p 6∈ {RiG1,RjG1,RkG1}, q = p⊥ = m1 + p0. F has
vanishing S-curvature if and only if g(t1,t2,t3) = g(t,t,t) for some t ∈ R. In this
case, F is Sp(n+ 1)U(1)-invariant and geodesic orbit.
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(3) When dim p = 2, dim p0 = 1, p0 ∈ {RiG1,RjG1,RkG1}, q = p⊥ =
m1 + p0. F has vanishing S-curvature if and only if g(t1,t2,t3)|p = g(t,t,t)|p for
some t ∈ R. In this case, both g(t1,t2,t3) and F are Sp(n+1)U(1)-invariant and
geodesic orbit.

(4) When dim p = 2, dim p0 = 1, p0 6∈ {RiG1,RjG1,RkG1}, q = p⊥ =
m1 +p0. F has vanishing S-curvature if and only if g(t1,t2,t3) = g(t,t,t) for some
t ∈ R. In this case, F is Sp(n+ 1)U(1)-invariant and geodesic orbit.

(5) When p = m0, q = m1, n ≥ 1. F has vanishing S-curvature for all
t1, t2, t3 > 0.

As a conclusion, we obtain a complete description of invariant (α1, α2)-
metrics on spheres with vanishing S-curvature.

Theorem 5.4. Let F be an invariant non-Riemannian (α1, α2)-metric on a
sphere Sn with n > 1. Then we have:

(1) When the connected isometry group I0(Sn, F ) is not isomorphic to Sp(k)
for any k ≥ 1, F has vanishing S-curvature.

(2) When the connected isometry group I0(Sn, F ) is isomorphic to Sp(k) for
some k ≥ 1, F has vanishing S-curvature can only be occurred in the case (5)
in Theorem 5.3.

6. Proof of Theorem 1.1

To prove Theorem 1.1, we need following results.

Proposition 6.1. Assume an Sp(n+ 1)-invariant (α1, α2)-metric F on S4n+3

= Sp(n + 1)/Sp(n) is a geodesic orbit metric with respect to Sp(n + 1). Then
F can be expressed as an (α1, α2)-metric induced by an invariant Riemannian
metric g(t1,t2,t3) with t1 = t2 = t3.

Proof. By the discussion in the above section, we have already proved this
statement for the cases (I)-(IV).

For the case (V), p = m0, q = m1. For every X = x1iG1 + x2jG1 + x3kG1 ∈
m0, there exists an A ∈ sp(n) such that X+A is a geodesic vector. By Theorem
3.6, for all Y = y1iG1 + y2jG1 + y3kG1 ∈ m0, we have

0 = g(t1,t2,t3)([X +A, Y ]m, X)

= g(t1,t2,t3)([X,Y ]m, X)

= 2
√

2[y1x2x3(t2 − t3)− y2x1x3(t1 − t3) + y3x1x2(t1 − t2)].

This shows that

x2x3(t2 − t3) = x1x3(t1 − t3) = x1x2(t1 − t2) = 0,

hence t1 = t2 = t3. This completes the proof of this conclusion. �

The following result is in fact Lemma 3 in [18].

Lemma 6.2. For any X ∈ m0, Y ∈ m1, there exists A ∈ sp(n) such that
[A, Y ] = [X,Y ].
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Proof. In Lie algebra sp(n + 1), we write Eij for the skew-symmetric matrix
with 1 in the (i, j)-th entry and −1 in the (j, i)-th entry, and zeros elsewhere.
We also denote by Fij the symmetric matrix with 1 in both the (i, j)-th and
the (j, i)-th entry, and zeros elsewhere. It is easy to check that the matrices
iGi, jGi, kGi, Eij , iFij , jFij , kFij , where 1 ≤ i, j ≤ n+ 1 and i < j, constitute
a basis of sp(n+ 1).

Suppose X = x1iG1 +x2jG1 +x3kG1 ∈ m0, Y = Y2 +Y3 + · · ·+Yn+1 ∈ m1,
where Ys = ys0E1s + ys1iF1s + ys2jF1s + ys3kF1s, 2 ≤ s ≤ n + 1. Let x =
x1i + x2j + x3k, ys = ys0 + ys1i + ys2j + ys3k. For any 2 ≤ s ≤ n+ 1 satisfying
ys = 0, we choose a vector As ∈ span{iGs, jGs,kGs} ⊆ sp(n), it is obvious
that [As, Ys] = [X,Ys]. For the others s satisfying ys 6= 0, we let as = y−1

s xys
and As = asGs ∈ sp(n) (see the proof of Lemma 3 in [18]). As ysas = xys, one

has [As, Ys] = [X,Ys]. Now let A =
∑n+1
s=2 As ∈ sp(n), then

[A, Y ] =

n+1∑
s=2

[As, Y ] =

n+1∑
s=2

[As, Ys] =

n+1∑
s=2

[X,Ys] = [X,

n+1∑
s=2

Ys] = [X,Y ],

which completes the proof. �

Now we can state the proof of Theorem 1.1.

Proof of Theorem 1.1. Keep notation as above.
The “only if” part. Following Proposition 6.1, we assume the geodesic orbit

(α1, α2)-metric F on S4n+3 = Sp(n + 1)/Sp(n) is induced by an Sp(n + 1)-
invariant Riemannian metric g(t,t,t). For the case (V), F is clearly Sp(n +
1)Sp(1)-invariant.

For the cases (I)-(IV): {p, q} 6= {m0,m1}. Notice that [p∩m0, q∩m0]m0
6= 0,

we can choose unit vectors Xp ∈ p∩m0, Xq ∈ q∩m0 such that [Xp, Xq]m0 6= 0.

Let Xθ =
√

1− θ2Xp + θXq ⊆ m \ (p ∪ q) be a family of unit vectors in m0,
θ ∈ (0, 1).

By assumption, there exist Aθ ∈ sp(n) such that Xθ + Aθ are geodesic
vectors. According to Theorem 3.6, for all Y ∈ m0,

0 = g(t,t,t)

(
[Xθ +Aθ, Y ]m, (ϕ(θ)− θϕ′(θ))

√
1− θ2Xp

+

(
ϕ(θ)− (θ − θ−1)ϕ′(θ)

)
θXq

)
= g(t,t,t) ([Xθ, Y ]m, (ϕ(θ)− θϕ′(θ))Xθ + ϕ′(θ)Xq)

= − ϕ′(θ)g(t,t,t)([Xθ, Xq]m, Y )

= −
√

1− θ2ϕ′(θ)g(t,t,t)([Xp, Xq]m, Y ).

We have
√

1− θ2ϕ′(θ) = 0, that is, ϕ(θ) is a constant function. This implies
that F is a Riemannian metric and hence Sp(n+1)Sp(1)-invariant by Theorem
1 in [18].
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The “if” part. According to Theorem 1 in [18], we assume F is an
Sp(n+ 1)Sp(1)-invariant non-Riemmanian (α1, α2)-metric on S4n+3 = Sp(n+
1)/Sp(n). In this case, F can also be expressed as a Sp(n + 1)-invariant non-
Riemmanian (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) induced by a Rie-
mannian metric g(t,t,t) for some t ∈ R and the decomposition m = p + q with
p = m0, q = m1. Notice that g(t,t,t) is naturally reductive, by Theorem 3.6,
every vector X ∈ m0∪m1 is a geodesic vector. Now for any X ∈ m\ (m0∪m1),
write X = X0 +X1, X0 ∈ m0, X1 ∈ m1. By Lemma 6.2, there exists A ∈ sp(n)
such that [

ϕ(θ)− (θ − θ−1)ϕ′(θ)
]

[A,X1] + θ−1ϕ′(θ)[X0, X1] = 0,

θ =

√
g(t,t,t)(X1, X1)

g(t,t,t)(X,X)
∈ (0, 1).

Now for all Y ∈ m,

g(t,t,t)

(
[X +A, Y ]m, (ϕ(θ)− θϕ′(θ))X0 +

(
ϕ(θ)− (θ − θ−1)ϕ′(θ)

)
X1

)
= g(t,t,t)

(
[X,Y ]m, (ϕ(θ)− θϕ′(θ))X + θ−1ϕ′(θ)X1

)
+ g(t,t,t)

(
[A, Y ]m, (ϕ(θ)− θϕ′(θ))X0 +

(
ϕ(θ)− (θ − θ−1)ϕ′(θ)

)
X1

)
= g(t,t,t)

(
−θ−1ϕ′(θ)[X0, X1]m, Y

)
+ g(t,t,t)

(
−
[
ϕ(θ)− (θ − θ−1)ϕ′(θ)

]
[A,X1]m, Y

)
= 0.

This implies that X + A is a geodesic vector. So F is a geodesic orbit metric
with respect to Sp(n+ 1). This completes the proof of Theorem 1.1. �

Combining Theorem 1 in [18] and Theorem 1.1 in [21], we have the following
theorem.

Theorem 6.3. Let F be an invariant Finsler metric on a sphere Sn with n > 1,
we have:

(1) F is a geodesic orbit metric if and only if I0(Sn, F ) is not isomorphic to
Sp(k) for any k ≥ 1.

(2) When the connected isometry group I0(Sn, F ) is isomorphic to Sp(k +
1)Sp(1) for some k ≥ 0, F is a geodesic orbit (α1, α2)-metric with respect to
Sp(k + 1).

Finally, using the function f described as in (∗) in Section 2, we can present
infinitely many non-Riemannian (α1, α2)-metrics on S4n+3 = Sp(n+ 1)/Sp(n)
(n ≥ 0) with vanishing S-curvature which are not geodesic orbit, as follows.

F(t1,t2,t3)(X)

=

√
Re(ξξ̄′) + t1x2

1 + t2x2
2 + t3x2

3 + ε
(
(Re(ξξ̄′))k + (t1x2

1 + t2x2
2 + t3x2

3)k
) 1

k
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for all X = x1iG1 +x2jG1 +x3kG1 +
(

0 ξ
−ξ̄′ 0

)
∈ m0 +m1, where t1 6= t2, t1 6= t3,

t2 6= t3, ε is a positive number and k ≥ 2 is a positive integer.
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