• Title/Summary/Keyword: Matrix Ring

Search Result 236, Processing Time 0.025 seconds

THE UNITS AND IDEMPOTENTS IN THE GROUP RING K($Z_m$ $\times$ $Z_n$)

  • Park, Won-Sun
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.4
    • /
    • pp.597-603
    • /
    • 2000
  • Let K be an algebraically closed filed of characteristic 0 and let G = Z(sub)m x Z(sub)n. We find the conditions under which the elements of the group ring KG are units and idempotents respectively by using the represented matrix. We can see that if $\alpha$ = ∑r(g)g $\in$ KG is an idempotent then r(1) = 0, 1/mn, 2/mn, …, (mn-1)/mn or 1.

  • PDF

CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper, for a commutative ring R with an identity, considering the endomorphism ring $End_R$(M) of left R-module $_RM$ which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the irreducible(or simple) kernel on a (quasi-)injective module and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $Mat_{n{\times}n}$(F) with maximal image and irreducible kernel is a prime matrix, furthermore, any given matrix in $Mat_{n{\times}n}$(F) for any field F can be factored into a product of prime matrices.

  • PDF

Strongly Clean Matrices Over Power Series

  • Chen, Huanyin;Kose, Handan;Kurtulmaz, Yosum
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.387-396
    • /
    • 2016
  • An $n{\times}n$ matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let $A(x){\in}M_n(R[[x]])$. We prove, in this note, that $A(x){\in}M_n(R[[x]])$ is strongly clean if and only if $A(0){\in}M_n(R)$ is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.

INSERTION-OF-FACTORS-PROPERTY ON SKEW POLYNOMIAL RINGS

  • BASER, MUHITTIN;HICYILMAZ, BEGUM;KAYNARCA, FATMA;KWAK, TAI KEUN;LEE, YANG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1161-1178
    • /
    • 2015
  • In this paper, we investigate the insertion-of-factors-property (simply, IFP) on skew polynomial rings, introducing the concept of strongly ${\sigma}-IFP$ for a ring endomorphism ${\sigma}$. A ring R is said to have strongly ${\sigma}-IFP$ if the skew polynomial ring R[x;${\sigma}$] has IFP. We examine some characterizations and extensions of strongly ${\sigma}-IFP$ rings in relation with several ring theoretic properties which have important roles in ring theory. We also extend many of related basic results to the wider classes, and so several known results follow as consequences of our results.

REVERSIBILITY OVER UPPER NILRADICALS

  • Jung, Da Woon;Lee, Chang Ik;Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.447-454
    • /
    • 2020
  • The studies of reversible and NI rings have done important roles in noncommutative ring theory. A ring R shall be called QRUR if ab = 0 for a, b ∈ R implies that ba is contained in the upper nilradical of R, which is a generalization of the NI ring property. In this article we investigate the structure of QRUR rings and examine the QRUR property of several kinds of ring extensions including matrix rings and polynomial rings. We also show that if there exists a weakly semicommutative ring but not QRUR, then Köthe's conjecture does not hold.

Extensions of linearly McCoy rings

  • Cui, Jian;Chen, Jianlong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1501-1511
    • /
    • 2013
  • A ring R is called linearly McCoy if whenever linear polynomials $f(x)$, $g(x){\in}R[x]{\backslash}\{0\}$ satisfy $f(x)g(x)=0$, there exist nonzero elements $r,s{\in}R$ such that $f(x)r=sg(x)=0$. In this paper, extension properties of linearly McCoy rings are investigated. We prove that the polynomial ring over a linearly McCoy ring need not be linearly McCoy. It is shown that if there exists the classical right quotient ring Q of a ring R, then R is right linearly McCoy if and only if so is Q. Other basic extensions are also considered.

INSERTION PROPERTY BY ESSENTIAL IDEALS

  • Nam, Sang Bok;Seo, Yeonsook;Yun, Sang Jo
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • We discuss the condition that if ab = 0 for elements a, b in a ring R then aIb = 0 for some essential ideal I of R. A ring with such condition is called IEIP. We prove that a ring R is IEIP if and only if Dn(R) is IEIP for every n ≥ 2, where Dn(R) is the ring of n by n upper triangular matrices over R whose diagonals are equal. We construct an IEIP ring that is not Abelian and show that a well-known Abelian ring is not IEIP, noting that rings with the insertion-of-factors-property are Abelian.

ON WEAKLY LEFT QUASI-COMMUTATIVE RINGS

  • Kim, Dong Hwa;Piao, Zhelin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.503-509
    • /
    • 2017
  • We in this note consider a generalized ring theoretic property of quasi-commutative rings in relation with powers. We will use the terminology of weakly left quasi-commutative for the class of rings satisfying such property. The properties and examples are basically investigated in the procedure of studying idempotents and nilpotent elements.

QUASI-COMMUTATIVITY RELATED TO POWERS

  • Kim, Hyun-Min;Li, Dan;Piao, Zhelin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2107-2117
    • /
    • 2017
  • We study the quasi-commutativity in relation with powers of coefficients of polynomials. In the procedure we introduce the concept of ${\pi}$-quasi-commutative ring as a generalization of quasi-commutative rings. We show first that every ${\pi}$-quasi-commutative ring is Abelian and that a locally finite Abelian ring is ${\pi}$-quasi-commutative. The role of these facts are essential to our study in this note. The structures of various sorts of ${\pi}$-quasi-commutative rings are investigated to answer the questions raised naturally in the process, in relation to the structure of Jacobson and nil radicals.

ON A GENERALIZATION OF RIGHT DUO RINGS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.925-942
    • /
    • 2016
  • We study the structure of rings whose principal right ideals contain a sort of two-sided ideals, introducing right ${\pi}$-duo as a generalization of (weakly) right duo rings. Abelian ${\pi}$-regular rings are ${\pi}$-duo, which is compared with the fact that Abelian regular rings are duo. For a right ${\pi}$-duo ring R, it is shown that every prime ideal of R is maximal if and only if R is a (strongly) ${\pi}$-regular ring with $J(R)=N_*(R)$. This result may be helpful to develop several well-known results related to pm rings (i.e., rings whose prime ideals are maximal). We also extend the right ${\pi}$-duo property to several kinds of ring which have roles in ring theory.