
Bull. Korean Math. Soc. 53 (2016), No. 3, pp. 925–942
http://dx.doi.org/10.4134/BKMS.b150441
pISSN: 1015-8634 / eISSN: 2234-3016

ON A GENERALIZATION OF RIGHT DUO RINGS

Nam Kyun Kim, Tai Keun Kwak, and Yang Lee

Abstract. We study the structure of rings whose principal right ideals
contain a sort of two-sided ideals, introducing right π-duo as a generaliza-
tion of (weakly) right duo rings. Abelian π-regular rings are π-duo, which
is compared with the fact that Abelian regular rings are duo. For a right
π-duo ring R, it is shown that every prime ideal of R is maximal if and
only if R is a (strongly) π-regular ring with J(R) = N∗(R). This result
may be helpful to develop several well-known results related to pm rings
(i.e., rings whose prime ideals are maximal). We also extend the right
π-duo property to several kinds of ring which have roles in ring theory.

Throughout this note every ring is associative with identity unless otherwise
specified. Given a ring R (possibly without identity), J(R), N∗(R), N∗(R), and
N(R) denote the Jacobson radical, the prime radical, the upper nilradical (i.e.,
sum of all nil ideals), and the set of all nilpotent elements in R, respectively. It
is well-known that N∗(R) ⊆ J(R) and N∗(R) ⊆ N∗(R) ⊆ N(R). We use R[x]
(R[[x]]) to denote the polynomial (power series) ring with an indeterminate x

over R. Denote the n by n full (resp., upper triangular) matrix ring over R by
Matn(R) (resp., Un(R)). Use eij for the matrix unit with (i, j)-entry 1 and else-
where 0. Denote {(aij) ∈ Un(R) | the diagonal entries of (aij) are all equal}
by Dn(R). rR(−) (resp., lR(−)) is used to denote a right (resp., left) annihi-
lator in R.

∏
denotes the direct product of rings. Z (Zn) denotes the ring of

integers (modulo n).

1. Right π-duo rings

In this section we introduce the concept of a right π-duo ring as a general-
ization of weakly right duo ring, and study the structure of right π-duo rings.
Let R be a ring and M be a right R-module. Buhphang and Rege [4] called
M semicommutative if mRa = 0 whenever ma = 0 for m ∈ M and a ∈ R. We
first consider the condition (∗):

If ma = 0 for m ∈ M and a ∈ R, then mRan = 0 for some n ≥ 1,
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as a generalization of semicommutative modules.

Proposition 1.1. For a ring R the following conditions are equivalent:
(1) Every right R-module satisfies the condition (∗).
(2) Every cyclic right R-module satisfies the condition (∗).
(3) For any a ∈ R there is a positive integer n such that aR contains Ran.

(4) For any a ∈ R there is a positive integer n such that aR contains RanR.

Proof. (1)⇒(2) and (3)⇒(4) are obvious.
(2)⇒(3): Assume that (2) holds. Consider the cyclic right R-module R/aR.

Since (1+aR)a = 0, there exists a positive integer n such that (1+aR)ran = 0
for all r ∈ R. This implies Ran ⊆ aR.

(4)⇒(1): Assume that (4) holds. Let M be a right R-module and suppose
ma = 0 form ∈ M and a ∈ R. Then aR ⊆ rR(m). By assumption, RanR ⊆ aR

for some positive integer n. This yields mRan = 0. �

Following Feller [7], a ring (possibly without identity) is called right duo if
every right ideal is two-sided. Left duo rings are defined similarly. A ring is
called duo if it is both left and right duo. Let R be a ring and M be a right
R-module. Buhphang and Rege proved that a ring R is right duo if and only
if every right R-module is semicommutative if and only if every cyclic right
R-module is semicommutative, in [4, Proposition 2.11].

Based on Proposition 1.1, a ring R (possibly without identity) will be called
right π-duo if R satisfies the condition (∗). Left π-duo rings are defined simi-
larly. A ring is called π-duo if it is both left and right π-duo.

According to Yao [27], a ring R (possibly without identity) is called weakly

right duo if for each a in R there exists a positive integer n such that anR is
a two-sided ideal of R. Weakly left duo rings are defined similarly. A ring is
called weakly duo if it is both weakly left and weakly right duo. A ring (pos-
sibly without identity) is usually called Abelian if every idempotent is central.
Weakly right duo rings are Abelian by [27, Lemma 4].

According to Yu [28], a ring R (possibly without identity) is called right

quasi-duo if every maximal right ideal of R is two-sided. Left quasi-duo rings
are defined similarly. A ring is called quasi-duo if it is both left and right
quasi-duo. One may immediately observe that a ring R is right quasi-duo if
and only if so is R/J(R), and that every factor ring of a right quasi-duo ring
is again right quasi-duo. It is also straightforward that

∏
i∈I Ri of rings Ri is

right quasi-duo if and only if each Ri is right quasi-duo. Yu showed in [28,
Proposition 2.1] that a ring R is right quasi-duo if and only if Un(R) is right
quasi-duo, where n is allowed to be any finite or infinite cardinal number.

It is obvious that commutative rings are duo, right duo rings are weakly right
duo, and weakly right duo rings are right π-duo. Yu proved that weakly right
duo rings are right quasi-duo in [28, Proposition 2.2]. But every implication is
irreversible by the following.
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Example 1.2. (1) We find a right π-duo ring but not weakly right duo by
help of constructions in [3, Section 2] and [12, Example 3].

Let F be a field and let V1 = F ((x))[[y]] and V2 = F ((y))[[x]], where F ((x))
and F ((y)) are quotient fields of the power series rings F [[x]] and F [[y]] respec-
tively. Then V1 * V2 and V2 * V1. Define a ring isomorphism σ : V1 → V2 by
x 7→ y and y 7→ x, and put K = F ((x))((y)). Then σ can be extended to an
automorphism of K, so we can form the skew power series ring W = K[[t;σ]]
with the elements

∑∞
i=0 t

iki for ki ∈ K. The multiplication is only subject to
kt = tσ(k) for k ∈ K.

We next consider the subring

R = {v +
∞∑

i=1

tiki ∈ W | v ∈ V1, ki ∈ K}

of W consisting of those elements whose constant term is in V1. Then by [3], R
is a right chain ring (i.e., a ring whose lattice of right ideals is linearly ordered).

We first show that R is not weakly right duo by using a slightly different
method than [12, Example 3]. Assume on the contrary that R is weakly right
duo. Then for y + t ∈ R, R(y + t)k ⊆ (y + t)kR for some k ≥ 1, and so
1
x
(y + t)k = (y + t)kf(t) for some f(t) = v +

∑∞
i=1 t

iki ∈ R. Since (y + t)k is
not a unit, we get f(t) = v by comparing the degrees of both sides. Thus

1

x
(y + t)k =

yk

x
+ t

xk−1 + · · ·+ yk−1

y
+ · · ·+

1

x
tk

= ykv + t(xk−1 + · · ·+ yk−1)v + · · ·+ tkv.

From the constant terms of the equation, yk

x
= ykv, leading to v = 1

x
. But,

comparing the coefficients of t, we have v = 1
y
, a contradiction. Consequently,

R is not weakly right duo.
We next show that R is right π-duo. Let f(t) = v +

∑∞
i=1 t

iki ∈ R. If f(t)
is a unit, we are done. Letting f(t) be a nonzero nonunit. If Rf(t)nR ⊆ f(t)R
for some n ≥ 2, then we are done. Assume that Rf(t)nR * f(t)R for all n ≥ 2.
As noted before, R is a right chain ring. Thus we have f(t)R ⊆ Rf(t)2R. Then
f(t) =

∑m
j=1 rjf(t)

2sj for some rj = vj +
∑∞

i=1 t
iuij , sj = v′j +

∑∞
i=1 t

ivij ∈ R.
Note that

v +

∞∑

i=1

tiki

=

m∑

j=1

rj(v
2 + t(σ(v)k1 + k1v) + t2(σ2(v)k2 + σ(k1)k1 + k2v) + · · · )sj .(1)

Then v =
∑m

j=1 vjv
2v′j . Since v, vj , v

′
j ∈ V1, we have v = v2(

∑m
j=1 vjv

′
j). Thus

v(1− v(
∑m

j=1 vjv
′
j)) = 0. Since V1 is a domain, either v = 0 or v(

∑m
j=1 vjv

′
j) =

1. If v = 0, then by simple computation from the equality (1), we have ki = 0
for all i, which leads to f(t) = 0, a contradiction. If v is a unit in V1, then f(t)
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is a unit in R, which is also a contradiction. Consequently, Rf(t)nR ⊆ f(t)R
for some n ≥ 2, entailing that R is a right π-duo ring.

(2) Let D be a division ring and R = D3(D). R is easily shown to be weakly
right duo since any A ∈ R is either invertible or nilpotent, but not right duo
as can be seen by




0 0 D

0 0 D

0 0 0



 = Re23 * e23R =




0 0 0
0 0 D

0 0 0



 .

(3) Let D be a division ring and R = U2(D). Then R is right quasi-duo
since R/J(R) ∼= D ⊕D, but R is not weakly right duo since weakly right duo
rings are Abelian.

The π-duo property is not left-right symmetric by the following.

Example 1.3. There is a right π-duo ring which is not left π-duo. We refer
to [22, Example 1]. Let F (x) be the quotient filed of the polynomial ring
F [x] with an indeterminate x over a field F . Define a ring endomorphism
σ : F (x) → F (x) by σ(f(x)/g(x)) = f(x2)/g(x2). We consider the skew power
series ring R = F (x)[[t;σ]] with the elements

∑∞
i=0 t

iki for ki ∈ F (x). The
multiplication is only subject to kt = tσ(k) for k ∈ F (x). We first note that
each coefficient of the elements in Rtn is of the form f(t2n)/g(t2n). Then R is
not left π-duo since tmx /∈ Rt for any m ≥ 1. But, by the same method as in
[22, Example 1], we can compute that R is right duo (so right π-duo).

We use freely the above facts among right duo rings, weakly right duo rings,
right π-duo rings, and right quasi-duo rings.

In [8], a ring R is called von Neumann regular (simply, regular) if for every
x ∈ R there exists y ∈ R such that xyx = x. A ring R is usually called π-

regular if for each a ∈ R there exist a positive integer n and b ∈ R such that
an = anban. It is easily shown that J(R) of a π-regular ring R is nil. Regular
rings are clearly π-regular. Abelian regular rings are duo by [8, Theorem 3.2],
comparing with the following fact that Abelian π-regular rings are π-duo.

Lemma 1.4. (1) A ring R is Abelian π-regular if and only if so is Dn(R).
(2) Abelian π-regular rings are weakly duo (hence π-duo).
(3) Every factor ring of a right π-duo ring is also right π-duo.

(4) Every finite direct product of right π-duo rings is also right π-duo.

(5) Every nil ring is right π-duo as a ring without identity.

Proof. (1) Let R be an Abelian π-regular ring. Then Dn(R) is also Abelian
by [16, Lemma 2]. Define Nn(R) = {(aij ∈ Dn(R) | aii = 0 for all i}. Note

that Nn(R) is a nil ideal of Dn(R), and Dn(R)
Nn(R)

∼= R is π-regular. So Dn(R) is

π-regular by [2, Theorem 4].
Conversely, let r ∈ R and a = (aij) ∈ Dn(R) with aii = r and aij = 0 for

i 6= j. Since Dn(R) is π-regular, there exist b = (bij) ∈ Dn(R) with bii = s
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and k ≥ 1 such that ak = akbak. This yields rk = rksrk. The class of Abelian
rings is obviously closed under subrings.

(2) Let R be an Abelian π-regular ring and a ∈ R. Then there exist b ∈ R

and n ≥ 1 such that an = anban. Since R is Abelian, anb and ban are both
central. So we have ran = ranban = anbran ∈ anR and anr = anbanr =
anrban ∈ Ran for r ∈ R.

(3) and (5) are obvious.
(4) Let Ri, i ∈ {1, . . . , n}, be right π-duo rings, and R =

∏n
i=1 Ri. Take

a = (a1, . . . , an) ∈ R. Then there exist k1, . . . , kn ≥ 1 such that Ria
ki

i ⊆ aiRi.
Note that Ria

k
i ⊆ aiRi for all i, where k is maximal in {k1, . . . , kn}. This yields

that Rak ⊆ aR. �

The converse of Lemma 1.4(3) need not hold by the following.

Example 1.5. Consider R = U2(D) over a division ring D. Then each of the
non-trivial factor rings R/J(R) ∼= D ⊕ D, R/I ∼= D, and R/K ∼= D is right
π-duo, where J(R) = ( 0 D

0 0 ), I = (D D
0 0 ), K = ( 0 D

0 D ); but R is neither left nor
right π-duo as can be seen by the computation that en11R = e11R = (D D

0 0 ) *
Re11 = (D 0

0 0 ) and ( 0 D
0 D ) = Re22 = Ren22 * e22R = ( 0 0

0 D ) for all n ≥ 1.

Example 1.5 also shows that “R is right π-duo if and only if so is R/J(R)”
need not be true, comparing with the fact that R is right quasi-duo if and only
if R/J(R) is right quasi-duo.

The following shows that infinite direct products of right π-duo rings need
not be right π-duo, comparing with Lemma 1.4(4).

Example 1.6. We apply [15, Example 2.4]. Let A be a right π-duo ring and
Rn = Dn(A) for n ≥ 6. Then every Rn is right π-duo by Theorem 1.7 below.
Set R be the direct product of Ri’s for i = 6, 8, . . . , 2k, . . . (k = 3, 4, . . .). Take
x = (xi), y = (yi) ∈ R such that

xi = e12 + · · ·+ e( i

2
−1) i

2

and yi = e( i

2
+1)( i

2
+2) + · · ·+ e(i−1)i.

Then xy = 0, but xRym 6= 0 for all m ≥ 1 by the same computation as in [15,
Example 2.4]. This yields that R is not right π-duo by Proposition 1.9(3) to
follow.

For any ring A, Matn(A) (Un(A)), with n ≥ 2, is neither left nor right π-
duo by a similar method to Example 1.5. For a ring R and n ≥ 2, let Vn(R)
be the ring of all matrices (aij) in Dn(R) such that ast = a(s+1)(t+1) for s =

1, . . . , n− 2 and t = 2, . . . , n− 1. Note that Vn(R) ∼=
R[x]

xnR[x] .

It can be easily checked that Dn(R) (n ≥ 2) over a division ring R is weakly
right duo (and hence right π-duo) as noted in Example 1.2(2). But we have a
more general result for right π-duo rings as we see in the following.

Theorem 1.7. Let R be a ring and n ≥ 2. Then the following conditions are

equivalent:
(1) R is right π-duo.
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(2) Dn(R) is right π-duo.

(3) Vn(R) is right π-duo.

Proof. (2)⇒(1): Assume that E = Dn(R) is right π-duo. Let a ∈ R and
A = (aij) ∈ E with aii = a and elsewhere zero. Then there exist k ≥ 1 such
that EAk ⊆ AE. This yields Rak ⊆ aR, entailing that R is right π-duo. The
proof of (3)⇒(1) is similar.

(1)⇒(2): Write En = Dn(R). Let R be right π-duo. Let 0 6= A = ( a b
0 a ) ∈

E2. If a = 0, then E2A
2 = 0 ⊂ AE2. Assume a 6= 0. Since R is right π-duo,

there exists k ≥ 1 such that Rak ⊆ aR. So for r ∈ R,

r(ak)k+1 = rak(k+1) = rakak
2

= ar1a
kak(k−1) = a2r2a

k(k−1) = · · · = ak+1rk+1

for some r1, . . . , rk+1 ∈ R. Consider the following equalities:
(
r s

0 r

)(
a b

0 a

)k(k+1)

=

(
r s

0 r

)(
ak b1
0 ak

)k+1

=

(
r s

0 r

)(
ak(k+1) b2

0 ak(k+1)

)

=

(
rak(k+1) b3

0 rak(k+1)

)

=

(
ak+1rk+1 aα

0 ak+1rk+1

)
,

where s, b1 ∈ R and b2, b3 ∈ RakR (here b3 = aα for some α ∈ R since
RakR ⊆ aR). Moreover bakrk+1 = aβ for some β ∈ R also since RakR ⊆ aR.
Thus we now have

(
a b

0 a

)(
akrk+1 α− β

0 akrk+1

)
=

(
ak+1rk+1 aα− aβ + bakrk+1

0 ak+1rk+1

)

=

(
ak+1rk+1 aα− aβ + aβ

0 ak+1rk+1

)

=

(
ak+1rk+1 aα

0 ak+1rk+1

)

=

(
r s

0 r

)(
a b

0 a

)k(k+1)

.

This concludes that D2(R) is also right π-duo.

Next we show that E3 is right π-duo. Let 0 6= A =
(

a b1 c
0 a b2
0 0 a

)
∈ E3. If a = 0,

then E3A
3 = 0 ⊂ AE3. Assume a 6= 0. Since R is right π-duo, there exists

k ≥ 1 such that Rak ⊆ aR. So for r ∈ R,

r((ak)k+1)k+1 = rak(k+1)(k+1) = rakak((k+1)2−1)

= ar1a
kak((k+1)2−2) = a2r2a

k((k+1)2−2)
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= · · · = ak+1rk+1a
k((k+1)2−(k+1)) = ak+1rk+1a

k2(k+1)

for some r1, . . . , rk+1 ∈ R. Consider the following equalities:



r s1 t

0 r s2
0 0 r








a b1 c

0 a b2
0 0 a




k(k+1)3

=




r s1 t

0 r s2
0 0 r












a b1 c

0 a b2
0 0 a




k(k+1)2





k+1

=




r s1 t

0 r s2
0 0 r








ak(k+1)2 b′1 c′

0 ak(k+1)2 b′2
0 0 ak(k+1)2





k+1

=




r s1 t

0 r s2
0 0 r








ak(k+1)3 b′′1 c′′

0 ak(k+1)3 b′′2
0 0 ak(k+1)3





=




ak+1rk+1a

k2(k+1)(k+2) al1 al2

0 ak+1rk+1a
k2(k+1)(k+2) al3

0 0 ak+1rk+1a
k2(k+1)(k+2)



 ,

where s1, s2, t, b
′
1, b

′
2, c

′ ∈ R and b′′1 , b
′′
2 , c

′′ ∈ Rak(k+1)2R. Here

rb′′1+s1a
k(k+1)2 = al1, rb

′′
2+s2a

k(k+1)2 = al3, and rc′′+s1b
′′
2+tak(k+1)2 = al2

for some l1, l2, l3 ∈ RakR by referring to the computation “r((ak)k+1)k+1 =

ak+1rk+1a
k2(k+1)” above. Similarly we have

b1a
krk+1a

k2(k+1)(k+2) = aα and b2a
krk+1a

k2(k+1)(k+2) = aβ

for some α, β ∈ RakR. Then we also have b1(l3−β)+cakrk+1a
k2(k+1)(k+2) = aγ

for some γ ∈ R. Thus we now have



a b1 c

0 a b2
0 0 a








akrk+1a

k2(k+1)(k+2) l1 − α l2 − γ

0 akrk+1a
k2(k+1)(k+2) l3 − β

0 0 akrk+1a
k2(k+1)(k+2)





=




ak+1rk+1a

k2(k+1)(k+2) al1 al2

0 ak+1rk+1a
k2(k+1)(k+2) al3

0 0 ak+1rk+1a
k2(k+1)(k+2)





=




r s1 t

0 r s2
0 0 r








a b1 c

0 a b2
0 0 a




k(k+1)3

.

This concludes that D3(R) is also right π-duo.
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Lastly we extend the computing method for D3(R) to show that En is also
right π-duo. We proceed by induction on n. Let 0 6= A = (aij) ∈ En with
aii = a. If a = 0, then EnA

n = 0 ⊂ AEn. Assume a 6= 0. Consider two n− 1
by n− 1 matrices

B =





a11 a12 · · · · · · a1(n−1)

0 a22 · · · · · · a2(n−1)

...
...

...
...

...
0 0 · · · 0 a(n−1)(n−1)





and

C =





a22 · · · · · · a2(n−1) a2n
...

...
...

...
...

0 · · · 0 a(n−1)(n−1) a(n−1)n

0 0 · · · 0 ann





which are taken in part from the matrix A. Then B,C ∈ En−1. Let S =
(sij) ∈ En. Take two n − 1 by n − 1 matrices S1 and S2 from S as above. In
the following we use the computation related to D3(R) repeatedly. Then, by
induction hypothesis, we can take m sufficiently large such that

S1B
m = (bij) = B





akα ag12 · · · · · · ag1(n−1)

0 akα · · · · · · ag2(n−1)

...
...

...
...

...
0 0 · · · 0 akα





and

S2C
m = (cij) = C





akα ah23 · · · · · · ah2n

0 akα · · · · · · ah3n

...
...

...
...

...
0 0 · · · 0 akα



 ∈ En−1

with bii, cii ∈ ak+1R and α, gij , hij ∈ RakR for i 6= j. Similarly we can let
SAm = (dij) ∈ En with d1n ∈ aRakR, say d1n = ad with d ∈ RakR. Note
that bij = cij = dij and gij = hij for i, j with 2 ≤ i, j ≤ n − 1. Since
a12h2n + a13h3n + · · ·+ a1(n−1)h(n−1)n + a1na

kα ∈ RakR ⊆ aR, we can write

a12h2n + a13h3n + · · ·+ a1(n−1)h(n−1)n + a1na
kα = aǫ1 for some ǫ1 ∈ R.

Now letting

D =





akα g12 − α12 · · · · · · g1(n−1) − α12 d− ǫ1
0 akα · · · · · · h2(n−1) − α2(n−1) h2n − ǫ2
...

...
...

...
...

...
0 0 0 · · · akα h(n−1)n − ǫn−1

0 0 0 · · · 0 akα




∈ En,
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the product AD is equal to




a a12 · · · · · · a1(n−1) a1n
0 a · · · · · · a2(n−1) a2n
...

...
...

...
...

...
0 0 · · · 0 a a(n−1)n

0 0 0 · · · 0 a









akα g12 − α12 · · · · · · g1(n−1) − α12 d− ǫ1
0 akα · · · · · · h2(n−1) − α2(n−1) h2n − ǫ2
...

...
...

...
...

...
0 0 0 · · · akα h(n−1)n − ǫn−1

0 0 0 · · · 0 akα





=





ak+1α ag12 · · · · · · ag1(n−1) ad

0 ak+1α · · · · · · ag2(n−1) ah2n

...
...

...
...

...
0 0 · · · 0 ak+1α ah(n−1)n

0 0 0 · · · 0 ak+1α




= SAm,

where a23h3n+· · ·+a2(n−1)h(n−1)n+a2na
kα = aǫ2 for some ǫ2 ∈ R (ǫ3, . . . , ǫn−1

can be obtained similarly), and a12a
kα = aα12 for some α12 ∈ R (α13, . . .,

α1(n−1), . . . , α(n−2)(n−1) can be obtained similarly). Therefore Dn(R) is right
π-duo.

The proof of (1) ⇒ (3) is similar. �

Recall that Vn(R) ∼=
R[x]

xnR[x] . So Theorem 1.7 gives the following.

Corollary 1.8. Let n ≥ 2. A ring R is right π-duo if and only if so is

R[x]/xnR[x].

In [8], a ring R is called strongly regular if for any a ∈ R, a ∈ a2R. A ring
is strongly regular if and only if it is Abelian regular by [8, Theorem 3.5]. An
ideal I of R is called completely primary if for elements a, b ∈ R so that ab ∈ I

with a /∈ I, then bm ∈ I for some m ≥ 1.
An element a in a ring R is usually called regular if lR(a) = 0 = rR(a).

Following the literature, a ring R is called right Ore if given a, b ∈ R with b

regular there exist a1, b1 ∈ R with b1 regular such that ab1 = ba1. It is a well-
known fact that R is a right Ore ring if and only if there exists the classical
right quotient ring of R. Right Noetherian domains are also well-known as
an example of right Ore rings. A ring R is usually called right p.p. if every
principal right ideal of R is projective. Left p.p. rings are defined similarly,
and a ring is called p.p. if it is both left and right p.p.. An Abelian right p.p.
ring is easily shown to be reduced as we see in [16, Lemma 1(1)], and so it also
left p.p.. We use this fact freely.
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Proposition 1.9. (1) Right π-duo rings are right quasi-duo.

(2) If R is a right π-duo ring, then every prime ideal of R is completely

primary.

(3) Let R be a right π-duo ring. If ab = 0 for a, b ∈ R, then aRbm = 0 for

some m ≥ 1.
(4) Right π-duo rings are Abelian.

(5) Right π-duo rings are right Ore.

(6) If a ring R is right π-duo and right p.p., then the classical right quotient

ring Q(R) of R is strongly regular.

Proof. (1) Let R be a right π-duo ring. We apply the proof of [28, Proposition
2.2]. Let M be a maximal right ideal of R. Assume on the contrary that M is
not a left ideal of R. Then aM * M for some a ∈ R\M , entailing aM+M = R.
Say ax + y = 1 for x, y ∈ M . Since R is right π-duo, there exists m ≥ 1 such
that R(xa)m ⊆ (xa)R ⊆ M . Thus we have

y(1 + ax+ · · ·+ (ax)m) = (1− ax)(1 + ax+ · · ·+ (ax)m)

= 1− (ax)m+1 = 1− a(xa)mx,

entailing 1 ∈ M since y, a(xa)mx ∈ M . This induces a contradiction. Therefore
R is right quasi-duo.

(2) Suppose P is a prime ideal of a ring R such that ab ∈ P with a /∈ P . If
R is right π-duo, then aRbm ⊆ abR ⊆ P for some m ≥ 1. This yields bm ∈ P .

(3) Let R be a right π-duo ring and ab = 0. Then aRbm ⊆ abR = 0 for some
m ≥ 1, entailing aRbm = 0.

(4) Let R be a right π-duo ring and e2 = e ∈ R. Then eR(1 − e) = 0 =
(1− e)Re by (3) since e(1− e) = 0 = (1− e)e. This leads to R being Abelian.

(5) Let R be a right π-duo ring and a, b ∈ R with b regular. Then there
exists m ≥ 1 such that Rbm ⊆ bR and thus abm = bc for some c ∈ R, noting
that bm is regular.

(6) Let R be a ring that is right π-duo and right p.p.. So R is reduced by
(4), entailing R being p.p.. By (5), R has a classical right quotient ring Q(R).
MoreoverQ(R) is also reduced by [23, Theorem 16]. We will use this fact freely.

We next show that Q(R) is p.p.. Let ab−1 ∈ Q(R). Since R is right p.p.,
rR(a) = eR for some e2 = e ∈ R. Then ab−1e = aeb−1 = 0, so eQ ⊆
rQ(R)(ab

−1). Next let cd−1 ∈ rQ(R)(ab
−1). Then we have

ab−1cd−1 = 0 ⇒ ab−1c = 0 ⇒ cab−1 = 0

⇒ ca = 0 = ac ⇒ c ∈ eR ⇒ c = ec,

entailing cd−1 = ecd−1 ∈ eQ. Since e is depending on not c but a, we can get
rQ(R)(ab

−1) ⊆ eQ. Thus rQ(R)(ab
−1) = eQ.

We now have that Q(R) is a reduced p.p. ring. Therefore Q(R) is strongly
regular by [13, Lemma 3.3]. �
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Following the literature, a ring is called locally finite if every finite subset
generates a finite multiplicative semigroup. It is shown that a ring is locally
finite if every finite subset generates a finite subring in [17, Theorem 2.2(1)].
It is easily checked that the class of locally finite rings contains finite rings and
algebraic closures of finite fields.

Proposition 1.10. Let R be a locally finite ring. Then the following conditions

are equivalent:
(1) R is Abelian.

(2) If ab = 0 for a, b ∈ R, then aRbm = 0 for some m ≥ 1.
(3) R is right (left) π-duo.

(4) R is right (left) weakly duo.

(5) R is weakly duo.

Proof. (1)⇒(5) is proved by [22, Proposition 15]. The proof of Proposition
1.9(4) is applicable to show (2)⇒(1). (3)⇒(2) is shown by Proposition 1.9(3),
and (5)⇒(4)⇒(3) are obvious. �

Each of the converses of Proposition 1.9(1, 4, 5) need not be true by the
following.

Example 1.11. (1) R = U2(D) over a division ring D is right quasi-duo, but
it is neither left nor right π-duo since left or right π-duo rings are Abelian by
Proposition 1.9(4).

(2) We refer to [26, Theorem 1.3.5, Corollary 2.1.14, and Theorem 2.1.15].
Let F 〈x, y〉 be the free algebra with noncommuting indetermiantes x, y over a

field F of characteristic zero. The first Weyl algebra A1(F ) ∼=
F 〈x,y〉

(yx−xy−1) , R

say, is a domain whose invertible elements are nonzero elements in F (hence
central), where (yx− xy − 1) is the ideal of F 〈x, y〉 generated by yx− xy − 1.
We identify x and y with their images in R for simplicity. R is neither left nor
right π-duo. In fact, Rxn (resp., xnR) is not contained in xR (resp., Rx) for all
n ≥ 1 since yxn /∈ xR (resp., xny /∈ Rx). But R is a right Noetherian domain,
and so R is right Ore.

(3) The ring A1(F ) in (2) is a domain (hence Abelian) but not right π-duo.

Related to Proposition 1.9(4), one may ask whether a right π-duo ring is
Abelian even for the case of without identity. However the answer is negative
by the following.

Example 1.12. Consider the ring R = (D D
0 0 ) ⊂ U2(D) over a right π-duo

ring D. Then R is clearly non-Abelian. Let A = ( a b
0 0 ) ∈ R. Since D is right

π-duo, there exists m ≥ 1 such that Dam ⊆ aD. Take B ∈ RA2m. Then

B = ( u v
0 0 ) (

a b
0 0 )

2m
for some ( u v

0 0 ) ∈ R. Note B =
(
ua2m ua2m−1b

0 0

)
.

Now since ua2m, ua2m−1b ∈ aD, we have that ua2m = ac and ua2m−1b = ad

for some c, d ∈ D. Hence B = ( a b
0 0 ) (

c d
0 0 ) ∈ AR, showing that R is right π-duo.

Following the literature, a ring R is called strongly π-regular if for each
a ∈ R, there exists positive integer n = n(a) such that an ∈ a2nR. Dischinger



936 NAM KYUN KIM, TAI KEUN KWAK, AND YANG LEE

[5] showed that strong π-regularity is left-right symmetric. It is well-known
that the endomorphism ring of V over a division ring D is strongly π-regular
if and only if V is finite dimensional over D, where V is a right D-module.
Strongly π-regular rings are π-regular by Azumaya [1], and these concepts are
equivalent for right π-duo rings by help of Proposition 1.9(1) and [11, Theorem
7].

Theorem 1.13. Let R be a right π-duo ring. Then the following conditions

are equivalent:
(1) Every prime ideal of R is maximal.

(2) Every prime ideal of R is right primitive.

(3) R is strongly π-regular and J(R) = N∗(R).
(4) R is π-regular and J(R) = N∗(R).

Proof. Since R is right π-duo, R is right quasi-duo by Proposition 1.9(1). So
N(R) ⊆ J(R) by [28, Lemma 2.3].

(1)⇒(2) is obvious. (3) and (4) are equivalent by [9, Theorem 1].
(2)⇒(3): Assume that (2) holds. We first show that R/N∗(R) is strongly

π-regular. Since R is right π-duo, R/N∗(R) is also right π-duo by Lemma
1.4(3). Note that R/N∗(R) is a subdirect product of R/P ’s, where P runs
over all prime (hence right primitive by (2)) ideals of R. R is right quasi-duo
by Proposition 1.9(1). So every R/P is a division ring by [14, Proposition
1], entailing that R/N∗(R) is reduced. Note that each prime factor ring of
R coincides with one of R/N∗(R). So R/N∗(R) is strongly π-regular by [18,
Lemma 4] since every prime factor ring of R/N∗(R) is a division ring.

Next since R is right π-duo, R is Abelian by Proposition 1.9(4). So R

is strongly π-regular by [9, Theorem 2]. This yields J(R) being nil. Since
R/N∗(R) is reduced, we must have J(R) = N∗(R).

(3)⇒(1): Assume that (3) holds. Then J(R) = N∗(R) = N(R) since
N(R) ⊆ J(R), and so R/N∗(R) is reduced strongly π-regular. Hence every
prime factor ring of R/N∗(R) is a division ring by [18, Lemma 4]. Thus every
prime ideal of R is maximal, noting that each prime factor ring of R coincides
with one of R/N∗(R). �

Note that in the proof of Theorem 1.13, J(R) = N∗(R) implies J(R) =
N∗(R) = N(R) since R is right π-duo (hence right quasi-duo).

The condition “J(R) = N∗(R)” in Theorem 1.13(3, 4) is not superfluous as
we see in the following argument.

Example 1.14. We apply the construction of ring and argument in [20, Exam-
ple 1.2] and [21, Theorem 2.2(2)]. Let K be a division ring and Rn = D2n(K)
for n ≥ 1. Define a map σ : Rn → Rn+1 by B 7→ (B 0

0 B ), then Rn can be
considered as a subring of Rn+1 via σ (i.e., B = σ(B) for B ∈ Rn). Set R be
the direct limit of the direct system (Rn, σij), where σij = σj−i. Then R is a
right π-duo ring by help of Theorem 1.7. But

J(R) = {A ∈ R | the diagonal entries of A are zero} 6= 0.
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However R is a prime ring by applying the proof of [20, Proposition 1.3]. Thus
the condition “Every prime ideal of R is maximal” in Theorem 1.13(3) does
not hold. Note N∗(R) = 0 and R is easily shown to be π-regular.

The ring R in Example 1.14 is Abelian by [16, Lemma 2], and hence R is
weakly duo by Lemma 1.4(2). A ring is usually called pm if every prime ideal
is maximal. It is well-known that if a weakly right duo ring is pm, then it is
π-regular. Thus Example 1.14 provides an example of a weakly duo π-regular
ring but not pm.

2. More properties of right π-duo rings

In this section we study various properties of right π-duo rings. According
to Marks [25], a ring R is called NI if N∗(R) = N(R). Note that R is NI if
and only if N(R) forms a two-sided ideal if and only if R/N∗(R) is reduced.
It is well-known that duo rings are NI, but not conversely. Note that U2(Z)
is clearly NI, but not right π-duo by Proposition 1.9(4). Recall that Köthe’s
conjecture means “the sum of two nil left ideals is nil”.

Theorem 2.1. For a right π-duo ring R, we have the following.

(1) If a ∈ N(R), then both aR and Ra are nil.

(2) Köthe’s conjecture holds if and only R is NI.

Proof. (1) We apply the proof of Yao [27, Lemma 2]. Let an = 0 for some
n ≥ 1. For any r ∈ R, we have R(ar)k ⊆ (ar)R for some k ≥ 1 since R is right
π-duo. Then there exists sα ∈ R such that α(ar)k = (ar)sα for any α ∈ R.
Then

(ar)nk = 1(ar)k(ar)(n−1)k = a(rs1)(ar)
(n−1)k

= a(ar)s2(ar)
(n−2)k = a2(rs2)(ar)

(n−2)k

· · · · · ·

= an(rsn) = 0.

Thus aR is a nil right ideal of R. It is obvious that aR is nil if and only if Ra

is nil.
(2) It is obvious that Köthe’s conjecture holds for NI rings. Assume that

Köthe’s conjecture holds. Let a, b ∈ N(R). Then Ra,Rb ⊆ N(R) by (1), and
moreover Ra + Rb ⊆ N(R) by assumption. This yields a + b ∈ N(R), and so
R is NI by help of (1). �

By help of Theorem 2.1(2), one can say that if a right π-duo ring, but not

NI, does exist, then Köthe’s conjecture does not hold for the ring.

Proposition 2.2. For a right π-duo ring R, we have the following.

(1) If J(R) = 0, then R is reduced.

(2) A ring R is simple if and only if R is a division ring.
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Proof. (1) The fact that R is reduced comes from Theorem 2.1(1) when J(R) =
0.

(2) It suffices to establish the necessity. Let R be simple. Then, by (1), R
is reduced. Since R is right π-duo, there exists k ≥ 1 such that 0 6= Rak ⊆ aR

for any 0 6= a ∈ R. This yields RakR = R since R is simple, entailing R = aR.
So R is a division ring. �

One may ask whether the class of right π-duo rings is also closed under
subrings. But the answer is negative by the following.

Example 2.3. Let R be a noncommutative division ring. Then R[x] is not
right π-duo by [22, Proposition 8], in spite of R being π-duo.

Next we refer to [26, Corollary 2.1.14 and Theorem 2.1.15]. Since R[x] is a
Noetherian domain, the classical quotient ring of R[x] is a division ring (hence
duo). However the subring R[x] is not right π-duo.

In Example 2.3, we also notice that the right π-duo property does not go up
to polynomial rings. But the converse is always true.

Proposition 2.4. Let R be a ring. If R[x] is right π-duo, then so is R.

Proof. Let R[x] be right π-duo and a ∈ R. Then R[x]ak ⊆ aR[x] for some
k ≥ 1. So for r ∈ R, (r + x)ak = a(b+ cx) for some b+ cx ∈ R[x]. This yields
rak = ab ∈ aR. �

Let A be an algebra (not necessarily with identity) over a commutative ring
S. Following Dorroh [6], the Dorroh extension of A by S is the Abelian group
A⊕ S with multiplication given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2)
for ri ∈ A and si ∈ S.

Proposition 2.5. (1) Let A be an algebra (not necessarily with identity) over
a commutative ring S. Then A is right π-duo if so is the Dorroh extension D

of A by S.

(2) Let A be a nil algebra of characteristic a prime p. Then the Dorroh

extension D of A by Z is weakly duo (hence π-duo).
(3) Let A be a nilpotent algebra of characteristic a prime p, and consider be

the Dorroh extension D of A by Z. Then D[x] is weakly duo (hence π-duo).

Proof. (1) Assume 1 ∈ A. Then s ∈ S is identified with s1 ∈ A, and so
A = {r + s | (r, s) ∈ D}.

Assume that D is right π-duo and let a ∈ A. Then there exists k ≥ 1 such
that D(a, 0)k ⊆ (a, 0)D. Thus, for r ∈ A,

(rak, 0) = (r, 0)(a, 0)k = (a, 0)(r1, s1) = (ar1 + as1, 0)

for some (r1, s1) ∈ D. This yields rak = a(r1 + s1) ∈ aA, noting s1 = s11 ∈ A.
Assume that A does not have an identity. Then we have rak = ar1 + as1

by the computation above. Multiplying this equality by a on the right side, we
get

rak+1 = raka = ar1a+ as1a = a(r1a+ s1a) ∈ aA,
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noting s1a ∈ A.
Therefore A is right π-duo.
(2) Let f = (a, k) ∈ D, an = 0 say. Since the characteristic of A is p,

(a, k)p
n

= (ap
n

+pnC1ka
pn−1+· · ·+pnCpn−1k

pn−1a, kp
n

)= (ap
n

, kp
n

)= (0, kp
n

)

by [19, Exercise 3.1.10(e)], where sCt means the combination. So (a, k)p
n

is
central in D, entailing Dfpn

= fpn

D. Thus D is weakly duo.
(3) Note that D[x] is isomorphic to the Dorroh extension of A[x] by Z[x] via

the corresponding

m∑

i=0

(ri, ki)x
i 7→ (

m∑

i=0

rix
i,

m∑

i=0

kix
i).

Then D[x] is weakly duo by applying the proof of (2) on A[x], noting that A[x]
is a nil algebra of characteristic a prime p. �

In [10, Lemma 3], Hirano et al. proved that if R[x] is right duo, then R is
commutative. But this result is not valid for weakly right duo rings. Let n ≥ 3
and

A = {(aij) ∈ Dn(Zp) | the diagonal entries of (aij) are zero},

where p is a prime. Then A is a noncommutative nilpotent ring, entailing that
the Dorroh extension D of A by Z is also noncommutative. But D[x] is weakly
duo by Proposition 2.5(3).

For the case of R[x] being weakly right duo, we have a similar result to [10,
Lemma 3] as follows.

Proposition 2.6. Let R be a ring and a ∈ R. If R[x] is weakly right duo, then

ak is central for some k ≥ 1.

Proof. Suppose that R[x] is weakly right duo and a ∈ R. Consider a+x ∈ R[x].
Then R[x](a+x)k ⊆ (a+x)kR[x] for some k ≥ 1, and so R(a+x)k ⊆ (a+x)kR.
Thus for any b ∈ R, we have b(a + x)k = (a + x)kc for some c ∈ R. Then
bak + 2bax + · · · + bxk = b(ak + 2ax + · · · + xk) = (ak + 2ax + · · · + xk)c =
akc+ 2acx+ · · ·+ cxk. This yields b = c and bak = akc = akb. �

Note that the power k of a depends only on a+ x (hence a) in the proof of
Proposition 2.6.

The converse of the case of without identity in Proposition 2.5(1) need not
hold by the following.

Example 2.7. Let A be the semigroup on the set {a, b} satisfying the relations
a2 = a = ba and b2 = b = ab. Let R = Z2[A] be the semigroup ring of A over
Z2. Then R = {0, a, b, a+ b} without identity.

We first claim that R is right π-duo. In fact, aR = bR = R with a2 = a, b2 =
b, (a+ b)2 = 0. This implies that R is right π-duo.
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We next consider the Dorroh extension of R by Z2, say D. Then (a, 1)D =
{(0, 0), (a, 1)}, and (a, 1) is an idempotent in D which is not central since
(b, 1)(a, 1) 6= (a, 1)(b, 1). By Proposition 1.9(4), D is not right π-duo.

Proposition 2.8. Let M be a multiplicatively closed subset of a ring R con-

sisting of central regular elements. If R is right π-duo, then so is M−1R.

Proof. Suppose that R is right π-duo and let u−1a ∈ M−1R. Then there exists
k ≥ 1 such that Rak ⊆ aR. Let ǫ ∈ M−1R(u−1a)k. Then ǫ = (v−1b)(u−1a)k =
v−1(u−1)kbak for some v−1b ∈ M−1R. Since bak ∈ Rak ⊆ aR, bak = ac for
some c ∈ R. Then

ǫ = v−1(u−1)k−1u−1bak = w−1u−1ac = (u−1a)w−1c ∈ (u−1a)M−1R,

letting v−1(u−1)k−1 = w−1. Thus M−1R is right π-duo. �

Recall the ring of Laurent polynomials in x, written by R[x;x−1]. Letting
M = {1, x, x2, . . .}, M is clearly a multiplicatively closed subset of central
regular elements in R[x] such that R[x;x−1] = M−1R[x]. So Proposition 2.8
yields the following.

Corollary 2.9. Let R be a ring. If R[x] is right π-duo, then so is R[x;x−1].

Recall that a ring R is called local if R/J(R) is a division ring, and R

is semilocal if R/J(R) is semisimple Artinian. A ring R is usually called right

(left) weakly π-regular if for each a ∈ R, there exists a positive integer n = n(a),
depending on a, such that an ∈ anRanR (an ∈ RanRan). Any π-regular ring
is clearly both left and right weakly π-regular.

Proposition 2.10. (1) Let R be a semilocal ring with J(R) nil. Then R is

weakly right duo if and only if R is right π-duo if and only if R is Abelian and

right quasi-duo.

(2) Let R be a right (or left) weakly π-regular ring. Then R is weakly right

duo if and only if R is right π-duo if and only if R is Abelian and right quasi-

duo.

(3) Let e ∈ R be a central idempotent of a ring R. Then R is right π-duo if

and only if eR and (1 − e)R are right π-duo rings.

(4) Let R be a regular ring. Then R is right π-duo if and only if R is weakly

right duo if and only if R is right duo.

Proof. (1) It comes from Proposition 1.9(1, 4) and [22, Theorem 3].
(2) It follows from Proposition 1.9(1, 4) and [22, Corollary 11].
(3) Let r ∈ R and suppose that R is right π-duo. Then R(er)n ⊆ erR for

some n ≥ 1. Since e is central, we also have

eR(er)n = R(er)n ⊆ erR = ereR,

entailing that eR is right π-duo. Similarly, (1− e)R is also right π-duo.
The converse comes from Lemma 1.4(4).
(4) is shown by Proposition 1.9(4) and [8, Theorem 3.2]. �
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A ring R is called semiperfect if R is semilocal and idempotents can be lifted
modulo J(R). Local rings are Abelian and semilocal.

Proposition 2.11. A ring R is right π-duo and semiperfect if and only if R

is a finite direct sum of local right π-duo rings.

Proof. Suppose that R is right π-duo and semiperfect. Since R is semiperfect,
R has a finite orthogonal set {e1, e2, . . . , en} of local idempotents whose sum is
1 by [24, Proposition 3.7.2], say R =

∑n
i=1 eiR such that each eiRei is a local

ring. By Proposition 1.9(4), R is Abelian and so eiR = eiRei for each i. But
each eiR is also right π-duo ring by Proposition 2.10(3).

Conversely assume that R is a finite direct sum of local right π-duo rings.
Then R is semiperfect since local rings are semiperfect by [24, Corollary 3.7.1],
and moreover R is right π-duo by Lemma 1.4(4). �
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