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Extensions of linearly McCoy rings

Jian Cui and Jianlong Chen

Abstract. A ring R is called linearly McCoy if whenever linear poly-
nomials f(x), g(x) ∈ R[x]\{0} satisfy f(x)g(x) = 0, there exist nonzero
elements r, s ∈ R such that f(x)r = sg(x) = 0. In this paper, extension
properties of linearly McCoy rings are investigated. We prove that the
polynomial ring over a linearly McCoy ring need not be linearly McCoy.
It is shown that if there exists the classical right quotient ring Q of a
ring R, then R is right linearly McCoy if and only if so is Q. Other basic
extensions are also considered.

1. Introduction

All rings are associative with unity. For a ring R, the polynomial ring over
R is denoted by R[x] with x its indeterminate, and Eij stands for the usual
matrix unit (i.e., with 1 at (i, j)-entry and 0 elsewhere).

McCoy proved in 1942 [14] that if two polynomials annihilate each other
over a commutative ring, then each polynomial has a nonzero annihilator in
the base ring. Rege and Chhawchharia [16] and Nielsen [15] independently
introduced the notion of a McCoy ring. A ring R is right McCoy if the equation
f(x)g(x) = 0 with f(x), g(x) ∈ R[x]\{0} implies there exists a nonzero r ∈ R
such that f(x)r = 0; left McCoy rings are defined similarly. A ring R is
called McCoy if it is both right and left McCoy. The class of McCoy rings
contains the class of Armendariz rings (These rings are defined through the
condition ‘whenever polynomials f(x) =

∑m

i=0 aix
i, g(x) =

∑n

j=0 bjx
j ∈ R[x]

satisfy f(x)g(x) = 0, then aibj = 0 for every i and j [16]’). A ring R is
semi-commutative provided ab = 0 implies aRb = 0 for a, b ∈ R. In [7] it
was claimed that all semi-commutative rings were McCoy. However, Hirano’s
claim assumed that R[x] is semi-commutative if R is semi-commutative, and
this was shown to be false in [8]. In 2006, Nielsen [15] gave an example of
semi-commutative ring which is not right McCoy. The concept of a linearly
McCoy ring, which properly generalizes McCoy rings and semi-commutative
rings, was introduced by Camillo and Nielsen [4] in 2008. Recall that a ring R
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is called (right or left) linearly McCoy if the McCoy condition holds for nonzero
linear polynomials f(x) = a0+a1x, g(x) = b0+ b1x ∈ R[x]. Related results on
McCoy conditions can be found in [4, 5, 10, 12, 15, 16, 17], etc. Recently, the
McCoy and the Armendariz conditions were extended to their module versions
(see [3, 6]). Due to Lee and Wong [11], a ring R is called weak Armendariz

(also called linearly Armendariz in literature) if for given f(x) = a0 + a1x and
g(x) = b0 + b1x ∈ R[x], f(x)g(x) = 0 implies that aibj = 0 for each i, j. Weak
Armendariz rings are clearly linearly McCoy; the falsity of the converse can be
deduced from [9, Example 1.2(4)].

The polynomial extension property of rings plays an important role in ring
theory. For rings that admit Armendariz or McCoy condition, it was proved
in [1] (resp., [12]) that a ring R is Armendariz (resp., McCoy) if and only if
R[x] is Armendariz (resp., McCoy). But it is still an open question of whether
the polynomial ring over a weak Armendariz ring is weak Armendariz (see [9]).
In this paper, we show that the polynomial ring over a semi-commutative ring
is not linearly McCoy. It is proved that if R is a linearly McCoy ring, then
R[x]/(xn) is linearly McCoy for any integer n ≥ 1; and if there exists a classical
right quotient ring Q of a ring R, then R is right linearly McCoy if and only
if Q is right linearly McCoy. Some other basic extensions of linearly McCoy
rings are also considered.

2. Polynomial rings

In this section, we investigate the polynomial ring over a linearly McCoy
ring. We first recall a fact in [4].

Lemma 2.1. All semi-commutative rings are linearly McCoy.

Anderson and Camillo [1] proved that a ring R is Armendariz if and only
if R[x] is Armendariz, and Lei et al. [12] showed the same property holds for
McCoy rings. It is natural to consider whether polynomial rings over linearly
McCoy rings are still linearly McCoy. Motivated by results in [15], we have the
following result.

Theorem 2.2. There exists a semi-commutative ring over which the polyno-

mial ring is not linearly McCoy.

Proof. Let K = F2〈a0, a1, a2, a3, a4, b0, b1, b2, b3〉 be the free associative algebra
(with 1) over F2 generated by nine indeterminates (as labeled above). Let I be
the ideal generated by the following relations:

〈 a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1 + a3b0, a2b2 + a3b1, a3b2,

a0b3 + a4b0, a1b3 + a4b1, a2b3 + a4b2, a3b3, a4b3, a0aj (0 ≤ j ≤ 4),

a3aj (0 ≤ j ≤ 4), a4aj (0 ≤ j ≤ 4), a1aj + a2aj (0 ≤ j ≤ 4),

bibj (0 ≤ i, j ≤ 3), biaj (0 ≤ i ≤ 3, 0 ≤ j ≤ 4)〉.
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Let R = K/I. Set F (y) = a0 + a1x + a2x
2 + a3x

3 + a4y, G(y) = b0 + b1x +
b2x

2 + b3y. Note that the first and the second rows of relations in I guarantee
F (y)G(y) = 0 in R[x][y].

The degree of each nonzero monomial α ∈ R is defined as the number of
indeterminates in α, denote it by deg(α); the degree of each element γ =
∑

i ri ∈ R is defined as deg(γ) = max{deg(ri) : i ∈ N}, where ri is the part of
degree i in γ.

Let Hn be the set of all linear combinations of monomials of degree n over
F2. Notice that Hn is finite for any n and the ideal I of R is homogeneous (i.e.,
if
∑s

i=1 ri ∈ I with ri ∈ Hi, then ri ∈ I). The proof will be divided into the
following four claims.

Claim 1. Let γ ∈ R. Then

γ = f0 + f1(a2)a1 + f2(a2)a2 + f3(a2)a3 + f4(a2)a4 + g(a2)a0

+ [r0 + r1(a2)a1 + r2(a2)a2 + r3(a2)a3 + r4(a2)a4]b0

+ [s0 + s1(a2)a1 + s2(a2)a2 + s3(a2)a3 + s4(a2)a4]b1

+ [t0 + t(a2)a4]b2 + h0b3

with f0, r0, s0, t0, h0 ∈ F2 and fi, g, rj , sk, t ∈ F2[x] (1 ≤ i, j, k ≤ 4), and the
expression is unique.

Proof of Claim 1. We directly adopt the diamond lemma (see [2]), one may
reduce any given monomial through the relations specified in the definition of
I as follows.

Firstly, check whether the monomial we plan to reduce has any occurrence
of a0b0, a3b2, a3b3, a4b3, a0aj , a3aj , a4aj , bibj, biaj. If so, then the monomial
is zero. If not, repeatedly replace all occurrences of a0b1, a0b2, a1b2, a2b2, a0b3,
a1b3, a2b3, a1aj with a1b0, a1b1+a2b0, a2b1+a3b0, a3b1, a4b0, a4b1, a4b2, a2aj ,
respectively. Then the resulting monomial will be in reduced form, and any
element of R is just a sum of monomials. Hence, each element of R can be
written uniquely as the form above. �

Claim 2. The ring R is semi-commutative.

Proof of Claim 2. Let γ, γ′ ∈ R with γγ′ = 0, where γ, γ′ are written in the
form of Claim 1. We write f1 for f1(a2), and do the same for other polynomials
in the variable a2. Then γ = f0 + f1a1 + f2a2 + · · · + h0b3, γ

′ = f ′

0 + f ′

1a1 +
f ′

2a2 + · · · + h′

0b3. Throughout we use the fact that I is a homogeneous ideal,
so the sum of all monomials of any given degree in γγ′ is zero.

For all r ∈ R, we prove that γrγ′ = 0. Clearly, it is true if either γ or γ′

is zero. So we may assume that γ, γ′ are nonzero in R. γγ′ = 0 implies that
f0f

′

0 = 0. So f0 = 0 or f ′

0 = 0. Suppose that f0 = 0. Let λ 6= 0 be the sum of
the (nonzero) terms of γ with lowest degree. Since I is homogeneous, λf ′

0 = 0,
and so f ′

0 = 0. Similarly, if f ′

0 = 0 we obtain f0 = 0. Thus, f0 = f ′

0 = 0.
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Suppose that deg(r) = 1. Notice that biγ
′ = 0 for 0 ≤ i ≤ 3 since f ′

0 = 0.
Therefore γbiγ

′ = 0. So it suffices to check γajγ
′ = 0 for 0 ≤ j ≤ 4. By Claim

1, we get γaj = (f1 + f2)a2aj. So if f1 = f2, then we have γajγ
′ = 0. In

what follows, assume that f1 6= f2. We show below that this contradicts the
assumption γ′ 6= 0.

Computing the reduced form of γγ′ yields

0 = γγ′

= (f1 + f2)a2(f
′

1a1 + f ′

2a2 + f ′

3a3 + f ′

4a4 + g′a0)

+ (r′0f1 + s′0g + (f1 + f2)a2r
′

1)a1b0 + (r′0f2 + t′0g + (f1 + f2)a2r
′

2)a2b0

+ (r′0f3 + t′0f1 + (f1 + f2)a2r
′

3)a3b0 + (r′0f4 + h′

0g + (f1 + f2)a2r
′

4)a4b0

+ (s′0f1 + t′0g + (f1 + f2)a2s
′

1)a1b1 + (s′0f2 + t′0f1 + (f1 + f2)a2s
′

2)a2b1

+ (s′0f3 + t′0f2 + (f1 + f2)a2s
′

3)a3b1 + (s′0f4 + h′

0f1 + (f1 + f2)a2s
′

4)a4b1

+ (t′0f4 + h′

0f2 + (f1 + f2)a2t
′)a4b2.

For ease of notation, we denote the coefficient of akbl in γγ′ by ⊛akbl . That
is

⊛a1b0 = r′0f1 + s′0g + (f1 + f2)a2r
′

1,

⊛a2b0 = r′0f2 + t′0g + (f1 + f2)a2r
′

2,

· · ·

⊛a4b2 = t′0f4 + h′

0f2 + (f1 + f2)a2t
′.

Since f1 + f2 6= 0, it follows that f ′

1 = f ′

2 = f ′

3 = f ′

4 = g′ = 0. From the last
five lines of γγ′ we obtain

⊛aib0 = ⊛aib1 = ⊛a4b2 = 0, i = 1, . . . , 4.

Assume that s′0 = 1. If t′0 = 1, then Eq. ⊛a2b1 implies deg((f1 + f2)a2) ≤
deg(f1 + f2), which is impossible since f1 6= f2. So t′0 = 0. But then adding
Eqs. ⊛a1b1 and ⊛a2b1 causes the same contradiction.

Thus we have s′0 = 0. If t′0 = 1, then adding Eqs. ⊛a2b1 and ⊛a3b1 reaches
the same contradiction as above. Therefore, t′0 = 0.

Suppose that r′0 = 1 and h′

0 = 1, then adding Eqs. ⊛a1b0 and ⊛a2b0 , Eqs.
⊛a4b1 and ⊛a4b2 , respectively. We also obtain the preceding contradiction. So
r′0 = 0 and h′

0 = 0. Because f1 6= f2, we have r′i = s′j = t′ = 0, where
1 ≤ i, j ≤ 4. Hence γ′ = 0, contradicting our previous assumption that γ′ 6= 0.

This shows that γrγ′ = 0 if deg(r) = 1. Repeating the above argument
replacing γ by γr, γrγ′ = 0 also holds when r is a monomial of any positive
degree. Clearly, if r = 1 then γrγ′ = 0. Since any element of R is just a sum of
monomials, putting this all together yields γrγ′ = 0 for all r ∈ R. Therefore,
R is a semi-commutative ring. �

Due to Claim 1, one may check that F (y), G(y) 6= 0 in R[x][y].

Claim 3. The polynomial ring R[x] is not right linearly McCoy.
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Proof of Claim 3. We conclude that rR[x](a4) = {
∑

i kib3x
i : ki ∈ F2, i ∈ N}+

∑4
j=0 ajR[x]. Obviously, by the construction of the ideal I, each polynomial of

the right side set in the equation above annihilates a4 on the right. Meanwhile,
for any p(x) ∈ rR[x](a4), write p(x) = γ0 + γ1x+ γ2x

2 + · · ·+ γnx
n with γi ∈ R

written in the form as Claim 1. So we let γi = f
(i)
0 + f

(i)
1 a1 + · · ·+ h

(i)
0 b3, 0 ≤

i ≤ n. Since a4γi = 0, we have f
(i)
0 = r

(i)
0 = s

(i)
0 = t

(i)
0 = 0. Thus γi ∈ {kb3 :

k ∈ F2}+
∑4

j=0 ajR, i.e., p(x) ∈ {
∑

i kib3x
i : ki ∈ F2, i ∈ N}+

∑4
j=0 ajR[x].

For any p(x) ∈ R[x], if F (y)p(x) = 0, then p(x) ∈ rR[x](a4) since a4p(x) =

0. So let p(x) = (k0b3+k′0p0)+ (k1b3+k′1p1)x+(k2b3+k′2p2)x
2+ · · ·+(knb3+

k′npn)x
n, where ki, k

′

i ∈ F2, pl ∈
∑4

j=0 ajR, 0 ≤ l ≤ n, and each pl is written

uniquely as Claim 1. If some pl0 does not occur in the coefficients of p(x)
(i.e., pl0 = 0), then let k′l0 = 0.

From the equation F (y)p(x) = 0, we also get (a0+a1x+a2x
2+a3x

3)p(x) = 0.
This implies the following system of equations:

(0) a0(k0b3 + k′0p0) = 0,
(1) a0(k1b3 + k′1p1) + a1(k0b3 + k′0p0) = 0,
(2) a0(k2b3 + k′2p2) + a1(k1b3 + k′1p1) + a2(k0b3 + k′0p0) = 0,
(3) a0(k3b3+k′3p3)+a1(k2b3+k′2p2)+a2(k1b3+k′1p1)+a3(k0b3+k′0p0) = 0,

...
(n+ 1) a1(knb3+k′npn)+a2(kn−1b3+k′n−1pn−1)+a3(kn−2b3+k′n−2pn−2) = 0.

Notice that a0pi = 0 and akpi = akb3 = 0, where k = 3, 4; i = 0, 1, . . . , n.
So from Eq.(0) we have k0 = 0, and Eq. (1) implies that k′0 = 0, k1 = 0.
Continuing this process, Eq.(i+ 1) yields k′i = ki+1 = 0 for 1 ≤ i ≤ n− 1, and
we get k′n = 0 from Eq.(n+ 1). Thus, p(x) = 0, which implies that R[x] is not
right linearly McCoy. �

Claim 4. The ring R is left McCoy (so R[x] is left linearly McCoy).

Proof of Claim 4. For completeness of the proof, we adapt the method used in
[15, Claim 8]. Let α(x), β(x) ∈ R[x]\{0} satisfy α(x)β(x) = 0. Set α(x) =
∑m

i=0 pix
i, β(x) =

∑n

i=0 qix
i. If each qi has zero constant term, then b0qi =

0, whence b0β(x) = 0, and we are done. Next we assume that there exists some
qi has a nonzero constant term. Let l0 be the smallest index such that ql0
satisfies this property.

For each pi 6= 0, let p′i be the sum of nonzero terms of pi with smallest
degree. And for pi = 0, put p′i = 0. Also, let k0 be the smallest index such
that, among the members of {p′0, p

′

1, . . . , p
′

m}\{0}, we have p′k0
with minimal

degree, since α(x) 6= 0, k0 exists.
Notice that the degree l0 + k0 part of α(x)β(x) = 0 we obtain

(∗)
∑

s,t:s+t=l0+k0

psqt = 0.



1506 JIAN CUI AND JIANLONG CHEN

Since I is a homogeneous ideal, each term of any fixed degree in Eq. (∗) must
add to zero. From our choice of k0 and l0, the term of smallest degree in Eq.
(∗) is p′k0

·1 = p′k0
6= 0, which comes from pk0

ql0 . So this causes a contradiction.
Hence R is a left McCoy ring. In view of [12, Theorem 1], the polynomial

ring R[x] is left linearly McCoy. �

This completes the proof of Theorem 2.2. �

By virtue of Theorem 2.2, a well-known result relating to semi-commutativity
can be obtained (cf. [4, Example 8.6], [8, Example 2]).

Corollary 2.3. The polynomial rings over semi-commutative rings need not

be semi-commutative.

Proposition 2.4. Let R be a ring and Ω be a multiplicatively closed subset of

R consisting of central regular elements. Then R is linearly McCoy if and only

if Ω−1R is linearly McCoy.

Proof. “⇒”. Let f(x) = α + βx, g(x) = α′ + β′x be nonzero elements of
Ω−1R[x] such that f(x)g(x) = 0, where α, β, α′, β′ ∈ Ω−1R. Then there
exist u, v ∈ Ω such that α = u−1a, β = u−1b, α′ = v−1c, β′ = v−1d. Since Ω
is contained in the center of R, we have f(x)g(x) = u−1(a+ bx)v−1(c+ dx) =
(uv)−1(a + bx)(c + dx) = 0. Set f1(x) = a + bx, g1(x) = c + dx. Obviously,
f1(x), g1(x) ∈ R[x]\{0} and f1(x)g1(x) = 0. There exist nonzero s, t ∈ R such
that f1(x)s = tg1(x) = 0 since R is linearly McCoy. Then f(x)γ = δg(x) = 0,
where γ = w−1s, δ = w−1t and nonzero w ∈ Ω. Therefore, Ω−1R is linearly
McCoy.

“⇐”. Suppose that f(x) = a0+a1x and g(x) = b0+b1x are nonzero elements
of R[x] with f(x)g(x) = 0. Also, f(x), g(x) ∈ Ω−1R[x]\{0}. Because Ω−1R
is linearly McCoy, there exist α = u−1a, β = v−1b ∈ Ω−1R\{0} such that
f(x)α = βg(x) = 0. It follows that f(x)a = bg(x) = 0. Thus R is linearly
McCoy. �

The ring of Laurent polynomials in x, coefficients in a ring R, consisting
of all formal sums

∑n

i=k mix
i with obvious addition and multiplication, where

mi ∈ R and k, n are (possibly negative) integers; denote it by R[x;x−1].

Corollary 2.5. For a ring R, R[x] is linearly McCoy if and only if R[x;x−1]
is linearly McCoy.

Proof. Let Ω = {1, x, x2, . . .}. Then Ω is a multiplicatively closed subset of R[x]
consisting entirely of central regular elements. Since R[x;x−1] = Ω−1R[x], by
Proposition 2.4, we are done. �

3. Matrix rings and classical quotient rings

In this section, we study the property “linearly McCoy” of some subring of
the upper triangular matrix ring; the trivial extension of a linearly McCoy ring
and its classical quotient ring are also investigated.
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Let R be a ring. We consider the ring

Rn =









































a a12 a13 . . . a1n
0 a a23 . . . a2n
0 0 a . . . a3n
...

...
...

. . .
...

0 0 0 . . . a















: a, akl ∈ R



























,

where n (≥ 1) is a positive integer.

Proposition 3.1. For any n ≥ 1, a ring R is linearly McCoy if and only if

the ring Rn is linearly McCoy.

Proof. “⇒”. Let H(x) ∈ Rn[x]. Then H(x) can be expressed as the form of a
matrix, and the (i, j)-entry of H(x) is denoted by hij(x) = [H(x)]i,j . Clearly,
hij(x) ∈ R[x].

Suppose that F (x), G(x) are nonzero linear polynomials of Rn[x] with
F (x)G(x) = 0. We show that there exist A, B ∈ Rn\{0} such that F (x)A =
BG(x) = 0. Now we proceed with the following cases.

Case 1. If f11(x) 6= 0, g11(x) 6= 0, then f11(x)g11(x) = 0, where f11(x) =
[F (x)]1,1, g11(x) = [G(x)]1,1. Since R is linearly McCoy, there exist s, t ∈
R\{0} such that f11(x)s = tg11(x) = 0. Put A = sE1n, B = tE1n. Then
F (x)A = BG(x) = 0.

Case 2. If f11(x) 6= 0, g11(x) = 0, then there exists gkl(x) 6= 0 satisfy-
ing g(k+u)l(x) = 0 for some k, l and 1 ≤ u ≤ n − k since G(x) 6= 0. So
f11(x)gkl(x) = 0. Hence there exists s ∈ R\{0} such that f11(x)s = 0. Write
A = sE1n. Then F (x)A = AG(x) = 0.

Case 3. If f11(x) = 0, g11(x) 6= 0, then there exist A, B ∈ Rn\{0} such
that F (x)A = BG(x) = 0. The proof is similar to Case 2.

Case 4. If f11(x) = 0, g11(x) = 0, then for any s ∈ R\{0}, F (x)A =
AG(x) = 0 with A = sE1n.

Therefore, Rn is linearly McCoy.
“⇐”. Assume that f(x)g(x) = 0, where f(x), g(x) are nonzero linearly

polynomials of R[x]. Let F (x) = f(x)En, G(x) = g(x)En with En the n × n
identity matrix. Then F (x), G(x) ∈ Rn[x]\{0} and F (x)G(x) = 0. Since Rn

is linearly McCoy, there exist A, B ∈ Rn\{0} such that F (x)A = BG(x) = 0.
Obviously, there exist nonzero a, b ∈ R such that f(x)a = bg(x) = 0. So the
proof is complete. �

Given a ring R and an (R,R)-bimodule M , the trivial extension of R by
M is the ring T (R,M) = R ⊕ M with the usual addition and the following
multiplication:

(r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2).

This is isomorphic to the ring of all matrices
(

r m
0 r

)

,
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where r ∈ R and m ∈ M and the usual matrix operations are used.

Corollary 3.2. A ring R is linearly McCoy if and only if the trivial extension

T (R,R) is linearly McCoy.

However, the trivial extension T (R,S) of a ring R by a ring S being right
linearly McCoy does not imply that of S.

Example 3.3. Let K be a commutative ring, R = {( a 0
0 a ) : a ∈ K} and S =

{(
a11 a12

0 a22
) : aij ∈ K}. Then the ring R and the trivial extension H = T (R,S)

are right linearly McCoy, but S is not.

Proof. Since R ∼= K, R is a linearly McCoy ring. But S is not right linearly
McCoy by [4, Proposition 10.2]. It is easy to check that S is an (R,R)-bimodule.
We next show that H = T (R,S) is right linearly McCoy. Let

F (x) =









(

f(x) 0
0 f(x)

) (

f11(x) f12(x)
0 f22(x)

)

(

0 0
0 0

) (

f(x) 0
0 f(x)

)









and

G(x) =









(

g(x) 0
0 g(x)

) (

g11(x) g12(x)
0 g22(x)

)

(

0 0
0 0

) (

g(x) 0
0 g(x)

)









be nonzero linear polynomials ofH [x] with F (x)G(x) = 0, where f(x) = a+a′x,
fij(x) = aij + a′ijx, g(x) = b + b′x, gij(x) = bij + b′ijx ∈ K[x] and 1 ≤ i ≤

j ≤ 2. From F (x)G(x) = 0, we have f(x)g(x) = 0, f(x)g11(x) + f11(x)g(x) =
0, f(x)g12(x)+f12(x)g(x) = 0 and f(x)g22(x)+f22(x)g(x) = 0. For any s ∈ K,

write E12(s) =
(

O ( s s
0 s )

O O

)

∈ H .

Case 1. If f(x) = 0, then for any nonzero r ∈ K, let A = E12(r). Then
F (x)E12(r) = 0.

Case 2. If f(x) 6= 0, g(x) 6= 0, then there exists s ∈ K\{0} such that
f(x)s = 0 since f(x)g(x) = 0 and K is linearly McCoy. Let B = E12(s). Then
F (x)B = 0.

Case 3. If f(x) 6= 0, g(x) = 0, then f(x)g11(x) = f(x)g12(x) = f(x)g22(x) =
0. Note that G(x) 6= 0.Without loss of generality, we may assume that g11(x) 6=
0. So there exists t ∈ K\{0} such that f(x)t = 0. Write C = E12(t). Then
F (x)C = 0.

Hence, H is a right linearly McCoy ring. �

Remark 3.4. Based on Proposition 3.1, one may suspect that the matrix ring
and the upper triangular matrix ring over a linearly McCoy ring are linearly
McCoy. But it gives a negative answer by [4, Proposition 10.2]. So the linearly
McCoy property is badly behaved with regards to Morita invariance.

In view of [5, Example 2.1], the class of linearly McCoy rings is not closed
under homomorphic images. Nevertheless, we have the following theorem.
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Theorem 3.5. Let R be a ring and n any positive integer. If R is linearly Mc-

Coy, then R[x]/(xn) is a linearly McCoy ring, where (xn) is the ideal generated

by xn.

Proof. Denote x in R[x]/(xn) by u. Then R[x]/(xn) ∼= R[u] = R +Ru+ · · ·+
Run−1, where u commutes with elements in R and un = 0.

Let F (y) = f0(u) + f1(u)y, G(y) = g0(u) + g1(u)y be nonzero elements

of R[u][y] such that F (y)G(y) = 0, where fi(u) =
∑n−1

p=0 a
p
i u

p and gj(u) =
∑n−1

q=0 bqju
q with i, j = 0, 1. Then

0 = F (y)G(y)

= (f0(u) + f1(u)y)(g0(u) + g1(u)y)

= (

n−1
∑

p=0

ap0u
p +

n−1
∑

p=0

ap1u
py)(

n−1
∑

q=0

bq0u
q +

n−1
∑

q=0

bq1u
qy)

= [

n−1
∑

p=0

(ap0 + ap1y)u
p][

n−1
∑

q=0

(bq0 + bq1y)u
q].

In particular, we have

(∗) (a00 + a01y)(b
k
0 + bk1y) = 0

with minimal k such that bk0 + bk1y 6= 0. Such k exists since G(y) 6= 0.
Assume that a00 = a01 = 0. Let h(u) = un−1. Then f0(u)h(u) = f1(u)h(u) =

0, whence F (y)h(u) = 0 since un = 0.
Suppose that a0i 6= 0 for some i. Since R is linearly McCoy, Eq. (∗) implies

that there exists r ∈ R\{0} such that (a00 + a01y)r = 0. Let h(u) = run−1.
Then fi(u)h(u) = 0 for i = 0, 1, and thus F (y)h(u) = 0.

Hence R[x]/(xn) ∼= R[u] is right linearly McCoy. R[x]/(xn) is left linearly
McCoy can be shown in the same manner. �

A classical right quotient ring for R is a ring Q which contains R as a
subring in such a way that every regular element (i.e., non-zero-divisor) of R is
invertible in Q and Q = {aµ−1 : a, µ ∈ R, µ regular}. The free algebra L〈x, y〉
in two indeterminates over a field L is a well-known example of a domain which
does not have a classical right quotient ring.

Theorem 3.6. Suppose that there exists the classical right quotient ring Q of

a ring R. Then R is right linearly McCoy if and only if Q is right linearly

McCoy.

Proof. “⇒”. Let f(x) = α0 + α1x and g(x) = β0 + β1x ∈ Q[x]\{0} sat-
isfy f(x)g(x) = 0. By [13, Proposition 2.1.16], we may assume that αi =
aiu

−1, βj = bjv
−1 with ai, bj ∈ R for i, j = 0, 1 and regular elements

u, v ∈ R. For each j, there exist cj ∈ R and a regular element w ∈ R such
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that u−1bj = cjw
−1 also by [13, Proposition 2.1.16]. Denote f1(x) = a0 + a1x

and g1(x) = c0 + c1x. Then the equation

f1(x)g1(x)(vw)
−1 =

1
∑

i=0

1
∑

j=0

(aicj)(vw)
−1xi+j

=

1
∑

i=0

1
∑

j=0

ai(u
−1bj)v

−1xi+j

= f(x)g(x) = 0

implies f1(x)g1(x) = 0. Since R is right linearly McCoy, there exists s ∈ R\{0}
such that f1(x)s = 0, i.e., ais = 0 for i = 0, 1. Then αi(us) = ais = 0 for every
i, which implies that f(x)(us) = 0 and us is nonzero in Q. This proves that Q
is right linearly McCoy.

“⇐”. Let f(x) = a0 + a1x, g(x) = b0 + b1x ∈ R[x]\{0} ⊆ Q[x]\{0} satisfy
f(x)g(x) = 0. Then there exists α ∈ Q\{0} such that f(x)α = 0 since Q is right
linearly McCoy. Because Q is a classical right quotient ring, we can take α =
au−1 for some a ∈ R\{0} and regular element u. Then f(x)au−1 = f(x)α = 0,
implies that f(x)a = 0. Therefore, R is a right linearly McCoy ring. �

Goldie theorem reveals that if R is a semiprime two-sided Goldie ring, then
R has the classical left and right quotient rings. Hence there exists a class of
rings satisfying the following hypothesis.

Corollary 3.7. Suppose that there exists the classical left and right quotient

ring Q of a ring R. Then R is linearly McCoy if and only if Q is linearly

McCoy.
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