Extensions of linearly McCoy rings

Jian Cui and Jianlong Chen

Abstract

A ring R is called linearly McCoy if whenever linear polynomials $f(x), g(x) \in R[x] \backslash\{0\}$ satisfy $f(x) g(x)=0$, there exist nonzero elements $r, s \in R$ such that $f(x) r=s g(x)=0$. In this paper, extension properties of linearly McCoy rings are investigated. We prove that the polynomial ring over a linearly McCoy ring need not be linearly McCoy. It is shown that if there exists the classical right quotient ring Q of a ring R, then R is right linearly McCoy if and only if so is Q. Other basic extensions are also considered.

1. Introduction

All rings are associative with unity. For a ring R, the polynomial ring over R is denoted by $R[x]$ with x its indeterminate, and $E_{i j}$ stands for the usual matrix unit (i.e., with 1 at (i, j)-entry and 0 elsewhere).

McCoy proved in 1942 [14] that if two polynomials annihilate each other over a commutative ring, then each polynomial has a nonzero annihilator in the base ring. Rege and Chhawchharia [16] and Nielsen [15] independently introduced the notion of a McCoy ring. A ring R is right $M c C o y$ if the equation $f(x) g(x)=0$ with $f(x), g(x) \in R[x] \backslash\{0\}$ implies there exists a nonzero $r \in R$ such that $f(x) r=0$; left McCoy rings are defined similarly. A ring R is called McCoy if it is both right and left McCoy. The class of McCoy rings contains the class of Armendariz rings (These rings are defined through the condition 'whenever polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for every i and $\left.j[16]^{\prime}\right)$. A ring R is semi-commutative provided $a b=0$ implies $a R b=0$ for $a, b \in R$. In [7] it was claimed that all semi-commutative rings were McCoy. However, Hirano's claim assumed that $R[x]$ is semi-commutative if R is semi-commutative, and this was shown to be false in [8]. In 2006, Nielsen [15] gave an example of semi-commutative ring which is not right McCoy. The concept of a linearly McCoy ring, which properly generalizes McCoy rings and semi-commutative rings, was introduced by Camillo and Nielsen [4] in 2008. Recall that a ring R

[^0]is called (right or left) linearly McCoy if the McCoy condition holds for nonzero linear polynomials $f(x)=a_{0}+a_{1} x, g(x)=b_{0}+b_{1} x \in R[x]$. Related results on McCoy conditions can be found in $[4,5,10,12,15,16,17]$, etc. Recently, the McCoy and the Armendariz conditions were extended to their module versions (see $[3,6]$). Due to Lee and Wong [11], a ring R is called weak Armendariz (also called linearly Armendariz in literature) if for given $f(x)=a_{0}+a_{1} x$ and $g(x)=b_{0}+b_{1} x \in R[x], f(x) g(x)=0$ implies that $a_{i} b_{j}=0$ for each i, j. Weak Armendariz rings are clearly linearly McCoy; the falsity of the converse can be deduced from [9, Example 1.2(4)].

The polynomial extension property of rings plays an important role in ring theory. For rings that admit Armendariz or McCoy condition, it was proved in [1] (resp., [12]) that a ring R is Armendariz (resp., McCoy) if and only if $R[x]$ is Armendariz (resp., McCoy). But it is still an open question of whether the polynomial ring over a weak Armendariz ring is weak Armendariz (see [9]). In this paper, we show that the polynomial ring over a semi-commutative ring is not linearly McCoy. It is proved that if R is a linearly McCoy ring, then $R[x] /\left(x^{n}\right)$ is linearly McCoy for any integer $n \geq 1$; and if there exists a classical right quotient ring Q of a ring R, then R is right linearly McCoy if and only if Q is right linearly McCoy. Some other basic extensions of linearly McCoy rings are also considered.

2. Polynomial rings

In this section, we investigate the polynomial ring over a linearly McCoy ring. We first recall a fact in [4].

Lemma 2.1. All semi-commutative rings are linearly McCoy.
Anderson and Camillo [1] proved that a ring R is Armendariz if and only if $R[x]$ is Armendariz, and Lei et al. [12] showed the same property holds for McCoy rings. It is natural to consider whether polynomial rings over linearly McCoy rings are still linearly McCoy. Motivated by results in [15], we have the following result.

Theorem 2.2. There exists a semi-commutative ring over which the polynomial ring is not linearly McCoy.

Proof. Let $K=\mathbb{F}_{2}\left\langle a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, b_{0}, b_{1}, b_{2}, b_{3}\right\rangle$ be the free associative algebra (with 1) over \mathbb{F}_{2} generated by nine indeterminates (as labeled above). Let I be the ideal generated by the following relations:

$$
\begin{aligned}
& \left\langle a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}, a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}, a_{2} b_{2}+a_{3} b_{1}, a_{3} b_{2},\right. \\
& a_{0} b_{3}+a_{4} b_{0}, a_{1} b_{3}+a_{4} b_{1}, a_{2} b_{3}+a_{4} b_{2}, a_{3} b_{3}, a_{4} b_{3}, a_{0} a_{j}(0 \leq j \leq 4), \\
& a_{3} a_{j}(0 \leq j \leq 4), a_{4} a_{j}(0 \leq j \leq 4), a_{1} a_{j}+a_{2} a_{j}(0 \leq j \leq 4), \\
& \left.b_{i} b_{j}(0 \leq i, j \leq 3), b_{i} a_{j}(0 \leq i \leq 3,0 \leq j \leq 4)\right\rangle .
\end{aligned}
$$

Let $R=K / I$. Set $F(y)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} y, G(y)=b_{0}+b_{1} x+$ $b_{2} x^{2}+b_{3} y$. Note that the first and the second rows of relations in I guarantee $F(y) G(y)=0$ in $R[x][y]$.

The degree of each nonzero monomial $\alpha \in R$ is defined as the number of indeterminates in α, denote it by $\operatorname{deg}(\alpha)$; the degree of each element $\gamma=$ $\sum_{i} r_{i} \in R$ is defined as $\operatorname{deg}(\gamma)=\max \left\{\operatorname{deg}\left(r_{i}\right): i \in \mathbb{N}\right\}$, where r_{i} is the part of degree i in γ.

Let H_{n} be the set of all linear combinations of monomials of degree n over \mathbb{F}_{2}. Notice that H_{n} is finite for any n and the ideal I of R is homogeneous (i.e., if $\sum_{i=1}^{s} r_{i} \in I$ with $r_{i} \in H_{i}$, then $\left.r_{i} \in I\right)$. The proof will be divided into the following four claims.
Claim 1. Let $\gamma \in R$. Then

$$
\begin{aligned}
\gamma= & f_{0}+f_{1}\left(a_{2}\right) a_{1}+f_{2}\left(a_{2}\right) a_{2}+f_{3}\left(a_{2}\right) a_{3}+f_{4}\left(a_{2}\right) a_{4}+g\left(a_{2}\right) a_{0} \\
& +\left[r_{0}+r_{1}\left(a_{2}\right) a_{1}+r_{2}\left(a_{2}\right) a_{2}+r_{3}\left(a_{2}\right) a_{3}+r_{4}\left(a_{2}\right) a_{4}\right] b_{0} \\
& +\left[s_{0}+s_{1}\left(a_{2}\right) a_{1}+s_{2}\left(a_{2}\right) a_{2}+s_{3}\left(a_{2}\right) a_{3}+s_{4}\left(a_{2}\right) a_{4}\right] b_{1} \\
& +\left[t_{0}+t\left(a_{2}\right) a_{4}\right] b_{2}+h_{0} b_{3}
\end{aligned}
$$

with $f_{0}, r_{0}, s_{0}, t_{0}, h_{0} \in \mathbb{F}_{2}$ and $f_{i}, g, r_{j}, s_{k}, t \in \mathbb{F}_{2}[x](1 \leq i, j, k \leq 4)$, and the expression is unique.

Proof of Claim 1. We directly adopt the diamond lemma (see [2]), one may reduce any given monomial through the relations specified in the definition of I as follows.

Firstly, check whether the monomial we plan to reduce has any occurrence of $a_{0} b_{0}, a_{3} b_{2}, a_{3} b_{3}, a_{4} b_{3}, a_{0} a_{j}, a_{3} a_{j}, a_{4} a_{j}, b_{i} b_{j}, b_{i} a_{j}$. If so, then the monomial is zero. If not, repeatedly replace all occurrences of $a_{0} b_{1}, a_{0} b_{2}, a_{1} b_{2}, a_{2} b_{2}, a_{0} b_{3}$, $a_{1} b_{3}, a_{2} b_{3}, a_{1} a_{j}$ with $a_{1} b_{0}, a_{1} b_{1}+a_{2} b_{0}, a_{2} b_{1}+a_{3} b_{0}, a_{3} b_{1}, a_{4} b_{0}, a_{4} b_{1}, a_{4} b_{2}, a_{2} a_{j}$, respectively. Then the resulting monomial will be in reduced form, and any element of R is just a sum of monomials. Hence, each element of R can be written uniquely as the form above.

Claim 2. The ring R is semi-commutative.
Proof of Claim 2. Let $\gamma, \gamma^{\prime} \in R$ with $\gamma \gamma^{\prime}=0$, where γ, γ^{\prime} are written in the form of Claim 1. We write f_{1} for $f_{1}\left(a_{2}\right)$, and do the same for other polynomials in the variable a_{2}. Then $\gamma=f_{0}+f_{1} a_{1}+f_{2} a_{2}+\cdots+h_{0} b_{3}, \gamma^{\prime}=f_{0}^{\prime}+f_{1}^{\prime} a_{1}+$ $f_{2}^{\prime} a_{2}+\cdots+h_{0}^{\prime} b_{3}$. Throughout we use the fact that I is a homogeneous ideal, so the sum of all monomials of any given degree in $\gamma \gamma^{\prime}$ is zero.

For all $r \in R$, we prove that $\gamma r \gamma^{\prime}=0$. Clearly, it is true if either γ or γ^{\prime} is zero. So we may assume that γ, γ^{\prime} are nonzero in $R . \gamma \gamma^{\prime}=0$ implies that $f_{0} f_{0}^{\prime}=0$. So $f_{0}=0$ or $f_{0}^{\prime}=0$. Suppose that $f_{0}=0$. Let $\lambda \neq 0$ be the sum of the (nonzero) terms of γ with lowest degree. Since I is homogeneous, $\lambda f_{0}^{\prime}=0$, and so $f_{0}^{\prime}=0$. Similarly, if $f_{0}^{\prime}=0$ we obtain $f_{0}=0$. Thus, $f_{0}=f_{0}^{\prime}=0$.

Suppose that $\operatorname{deg}(r)=1$. Notice that $b_{i} \gamma^{\prime}=0$ for $0 \leq i \leq 3$ since $f_{0}^{\prime}=0$. Therefore $\gamma b_{i} \gamma^{\prime}=0$. So it suffices to check $\gamma a_{j} \gamma^{\prime}=0$ for $0 \leq j \leq 4$. By Claim 1 , we get $\gamma a_{j}=\left(f_{1}+f_{2}\right) a_{2} a_{j}$. So if $f_{1}=f_{2}$, then we have $\gamma a_{j} \gamma^{\prime}=0$. In what follows, assume that $f_{1} \neq f_{2}$. We show below that this contradicts the assumption $\gamma^{\prime} \neq 0$.

Computing the reduced form of $\gamma \gamma^{\prime}$ yields

$$
\begin{aligned}
0= & \gamma \gamma^{\prime} \\
= & \left(f_{1}+f_{2}\right) a_{2}\left(f_{1}^{\prime} a_{1}+f_{2}^{\prime} a_{2}+f_{3}^{\prime} a_{3}+f_{4}^{\prime} a_{4}+g^{\prime} a_{0}\right) \\
& +\left(r_{0}^{\prime} f_{1}+s_{0}^{\prime} g+\left(f_{1}+f_{2}\right) a_{2} r_{1}^{\prime}\right) a_{1} b_{0}+\left(r_{0}^{\prime} f_{2}+t_{0}^{\prime} g+\left(f_{1}+f_{2}\right) a_{2} r_{2}^{\prime}\right) a_{2} b_{0} \\
& +\left(r_{0}^{\prime} f_{3}+t_{0}^{\prime} f_{1}+\left(f_{1}+f_{2}\right) a_{2} r_{3}^{\prime}\right) a_{3} b_{0}+\left(r_{0}^{\prime} f_{4}+h_{0}^{\prime} g+\left(f_{1}+f_{2}\right) a_{2} r_{4}^{\prime}\right) a_{4} b_{0} \\
& +\left(s_{0}^{\prime} f_{1}+t_{0}^{\prime} g+\left(f_{1}+f_{2}\right) a_{2} s_{1}^{\prime}\right) a_{1} b_{1}+\left(s_{0}^{\prime} f_{2}+t_{0}^{\prime} f_{1}+\left(f_{1}+f_{2}\right) a_{2} s_{2}^{\prime}\right) a_{2} b_{1} \\
& +\left(s_{0}^{\prime} f_{3}+t_{0}^{\prime} f_{2}+\left(f_{1}+f_{2}\right) a_{2} s_{3}^{\prime}\right) a_{3} b_{1}+\left(s_{0}^{\prime} f_{4}+h_{0}^{\prime} f_{1}+\left(f_{1}+f_{2}\right) a_{2} s_{4}^{\prime}\right) a_{4} b_{1} \\
& +\left(t_{0}^{\prime} f_{4}+h_{0}^{\prime} f_{2}+\left(f_{1}+f_{2}\right) a_{2} t^{\prime}\right) a_{4} b_{2} .
\end{aligned}
$$

For ease of notation, we denote the coefficient of $a_{k} b_{l}$ in $\gamma \gamma^{\prime}$ by $\circledast_{a_{k} b_{l}}$. That is

$$
\begin{aligned}
\circledast a_{1} b_{0} & =r_{0}^{\prime} f_{1}+s_{0}^{\prime} g+\left(f_{1}+f_{2}\right) a_{2} r_{1}^{\prime} \\
\circledast a_{2} b_{0} & =r_{0}^{\prime} f_{2}+t_{0}^{\prime} g+\left(f_{1}+f_{2}\right) a_{2} r_{2}^{\prime}, \\
& \ldots \\
\circledast a_{4} b_{2} & =t_{0}^{\prime} f_{4}+h_{0}^{\prime} f_{2}+\left(f_{1}+f_{2}\right) a_{2} t^{\prime} .
\end{aligned}
$$

Since $f_{1}+f_{2} \neq 0$, it follows that $f_{1}^{\prime}=f_{2}^{\prime}=f_{3}^{\prime}=f_{4}^{\prime}=g^{\prime}=0$. From the last five lines of $\gamma \gamma^{\prime}$ we obtain

$$
\circledast a_{i} b_{0}=\circledast a_{i} b_{1}=\circledast a_{4} b_{2}=0, \quad i=1, \ldots, 4 .
$$

Assume that $s_{0}^{\prime}=1$. If $t_{0}^{\prime}=1$, then Eq. $\circledast a_{2} b_{1}$ implies $\operatorname{deg}\left(\left(f_{1}+f_{2}\right) a_{2}\right) \leq$ $\operatorname{deg}\left(f_{1}+f_{2}\right)$, which is impossible since $f_{1} \neq f_{2}$. So $t_{0}^{\prime}=0$. But then adding Eqs. $\circledast_{a_{1} b_{1}}$ and $\circledast_{a_{2} b_{1}}$ causes the same contradiction.

Thus we have $s_{0}^{\prime}=0$. If $t_{0}^{\prime}=1$, then adding Eqs. $\circledast_{a_{2} b_{1}}$ and $\circledast_{a_{3} b_{1}}$ reaches the same contradiction as above. Therefore, $t_{0}^{\prime}=0$.

Suppose that $r_{0}^{\prime}=1$ and $h_{0}^{\prime}=1$, then adding Eqs. $\circledast_{a_{1} b_{0}}$ and $\circledast_{a_{2} b_{0}}$, Eqs. $\circledast a_{4} b_{1}$ and $\circledast_{a_{4} b_{2}}$, respectively. We also obtain the preceding contradiction. So $r_{0}^{\prime}=0$ and $h_{0}^{\prime}=0$. Because $f_{1} \neq f_{2}$, we have $r_{i}^{\prime}=s_{j}^{\prime}=t^{\prime}=0$, where $1 \leq i, j \leq 4$. Hence $\gamma^{\prime}=0$, contradicting our previous assumption that $\gamma^{\prime} \neq 0$.

This shows that $\gamma r \gamma^{\prime}=0$ if $\operatorname{deg}(r)=1$. Repeating the above argument replacing γ by γr, $\gamma r \gamma^{\prime}=0$ also holds when r is a monomial of any positive degree. Clearly, if $r=1$ then $\gamma r \gamma^{\prime}=0$. Since any element of R is just a sum of monomials, putting this all together yields $\gamma r \gamma^{\prime}=0$ for all $r \in R$. Therefore, R is a semi-commutative ring.

Due to Claim 1, one may check that $F(y), G(y) \neq 0$ in $R[x][y]$.
Claim 3. The polynomial ring $R[x]$ is not right linearly McCoy.

Proof of Claim 3. We conclude that $r_{R[x]}\left(a_{4}\right)=\left\{\sum_{i} k_{i} b_{3} x^{i}: k_{i} \in \mathbb{F}_{2}, i \in \mathbb{N}\right\}+$ $\sum_{j=0}^{4} a_{j} R[x]$. Obviously, by the construction of the ideal I, each polynomial of the right side set in the equation above annihilates a_{4} on the right. Meanwhile, for any $p(x) \in r_{R[x]}\left(a_{4}\right)$, write $p(x)=\gamma_{0}+\gamma_{1} x+\gamma_{2} x^{2}+\cdots+\gamma_{n} x^{n}$ with $\gamma_{i} \in R$ written in the form as Claim 1. So we let $\gamma_{i}=f_{0}^{(i)}+f_{1}^{(i)} a_{1}+\cdots+h_{0}^{(i)} b_{3}, 0 \leq$ $i \leq n$. Since $a_{4} \gamma_{i}=0$, we have $f_{0}^{(i)}=r_{0}^{(i)}=s_{0}^{(i)}=t_{0}^{(i)}=0$. Thus $\gamma_{i} \in\left\{k b_{3}\right.$: $\left.k \in \mathbb{F}_{2}\right\}+\sum_{j=0}^{4} a_{j} R$, i.e., $p(x) \in\left\{\sum_{i} k_{i} b_{3} x^{i}: k_{i} \in \mathbb{F}_{2}, i \in \mathbb{N}\right\}+\sum_{j=0}^{4} a_{j} R[x]$.

For any $p(x) \in R[x]$, if $F(y) p(x)=0$, then $p(x) \in r_{R[x]}\left(a_{4}\right)$ since $a_{4} p(x)=$ 0 . So let $p(x)=\left(k_{0} b_{3}+k_{0}^{\prime} p_{0}\right)+\left(k_{1} b_{3}+k_{1}^{\prime} p_{1}\right) x+\left(k_{2} b_{3}+k_{2}^{\prime} p_{2}\right) x^{2}+\cdots+\left(k_{n} b_{3}+\right.$ $\left.k_{n}^{\prime} p_{n}\right) x^{n}$, where $k_{i}, k_{i}^{\prime} \in \mathbb{F}_{2}, p_{l} \in \sum_{j=0}^{4} a_{j} R, 0 \leq l \leq n$, and each p_{l} is written uniquely as Claim 1. If some $p_{l_{0}}$ does not occur in the coefficients of $p(x)$ (i.e., $p_{l_{0}}=0$), then let $k_{l_{0}}^{\prime}=0$.

From the equation $F(y) p(x)=0$, we also get $\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) p(x)=0$. This implies the following system of equations:
(0) $a_{0}\left(k_{0} b_{3}+k_{0}^{\prime} p_{0}\right)=0$,
(1) $a_{0}\left(k_{1} b_{3}+k_{1}^{\prime} p_{1}\right)+a_{1}\left(k_{0} b_{3}+k_{0}^{\prime} p_{0}\right)=0$,
(2) $a_{0}\left(k_{2} b_{3}+k_{2}^{\prime} p_{2}\right)+a_{1}\left(k_{1} b_{3}+k_{1}^{\prime} p_{1}\right)+a_{2}\left(k_{0} b_{3}+k_{0}^{\prime} p_{0}\right)=0$,
(3) $a_{0}\left(k_{3} b_{3}+k_{3}^{\prime} p_{3}\right)+a_{1}\left(k_{2} b_{3}+k_{2}^{\prime} p_{2}\right)+a_{2}\left(k_{1} b_{3}+k_{1}^{\prime} p_{1}\right)+a_{3}\left(k_{0} b_{3}+k_{0}^{\prime} p_{0}\right)=0$,
$(n+1) a_{1}\left(k_{n} b_{3}+k_{n}^{\prime} p_{n}\right)+a_{2}\left(k_{n-1} b_{3}+k_{n-1}^{\prime} p_{n-1}\right)+a_{3}\left(k_{n-2} b_{3}+k_{n-2}^{\prime} p_{n-2}\right)=0$.
Notice that $a_{0} p_{i}=0$ and $a_{k} p_{i}=a_{k} b_{3}=0$, where $k=3,4 ; i=0,1, \ldots, n$. So from Eq.(0) we have $k_{0}=0$, and Eq. (1) implies that $k_{0}^{\prime}=0, k_{1}=0$. Continuing this process, Eq. $(i+1)$ yields $k_{i}^{\prime}=k_{i+1}=0$ for $1 \leq i \leq n-1$, and we get $k_{n}^{\prime}=0$ from Eq. $(n+1)$. Thus, $p(x)=0$, which implies that $R[x]$ is not right linearly McCoy.

Claim 4. The ring R is left McCoy (so $R[x]$ is left linearly McCoy).
Proof of Claim 4. For completeness of the proof, we adapt the method used in [15, Claim 8]. Let $\alpha(x), \beta(x) \in R[x] \backslash\{0\}$ satisfy $\alpha(x) \beta(x)=0$. Set $\alpha(x)=$ $\sum_{i=0}^{m} p_{i} x^{i}, \beta(x)=\sum_{i=0}^{n} q_{i} x^{i}$. If each q_{i} has zero constant term, then $b_{0} q_{i}=$ 0 , whence $b_{0} \beta(x)=0$, and we are done. Next we assume that there exists some q_{i} has a nonzero constant term. Let l_{0} be the smallest index such that $q_{l_{0}}$ satisfies this property.

For each $p_{i} \neq 0$, let p_{i}^{\prime} be the sum of nonzero terms of p_{i} with smallest degree. And for $p_{i}=0$, put $p_{i}^{\prime}=0$. Also, let k_{0} be the smallest index such that, among the members of $\left\{p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{m}^{\prime}\right\} \backslash\{0\}$, we have $p_{k_{0}}^{\prime}$ with minimal degree, since $\alpha(x) \neq 0, k_{0}$ exists.

Notice that the degree $l_{0}+k_{0}$ part of $\alpha(x) \beta(x)=0$ we obtain

$$
\begin{equation*}
\sum_{s, t: s+t=l_{0}+k_{0}} p_{s} q_{t}=0 \tag{*}
\end{equation*}
$$

Since I is a homogeneous ideal, each term of any fixed degree in Eq. (*) must add to zero. From our choice of k_{0} and l_{0}, the term of smallest degree in Eq. $(*)$ is $p_{k_{0}}^{\prime} \cdot 1=p_{k_{0}}^{\prime} \neq 0$, which comes from $p_{k_{0}} q_{l_{0}}$. So this causes a contradiction.

Hence R is a left McCoy ring. In view of [12, Theorem 1], the polynomial ring $R[x]$ is left linearly McCoy.

This completes the proof of Theorem 2.2.
By virtue of Theorem 2.2, a well-known result relating to semi-commutativity can be obtained (cf. [4, Example 8.6], [8, Example 2]).
Corollary 2.3. The polynomial rings over semi-commutative rings need not be semi-commutative.

Proposition 2.4. Let R be a ring and Ω be a multiplicatively closed subset of R consisting of central regular elements. Then R is linearly McCoy if and only if $\Omega^{-1} R$ is linearly $M c C o y$.

Proof. " \Rightarrow ". Let $f(x)=\alpha+\beta x, g(x)=\alpha^{\prime}+\beta^{\prime} x$ be nonzero elements of $\Omega^{-1} R[x]$ such that $f(x) g(x)=0$, where $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \Omega^{-1} R$. Then there exist $u, v \in \Omega$ such that $\alpha=u^{-1} a, \beta=u^{-1} b, \alpha^{\prime}=v^{-1} c, \beta^{\prime}=v^{-1} d$. Since Ω is contained in the center of R, we have $f(x) g(x)=u^{-1}(a+b x) v^{-1}(c+d x)=$ $(u v)^{-1}(a+b x)(c+d x)=0$. Set $f_{1}(x)=a+b x, g_{1}(x)=c+d x$. Obviously, $f_{1}(x), g_{1}(x) \in R[x] \backslash\{0\}$ and $f_{1}(x) g_{1}(x)=0$. There exist nonzero $s, t \in R$ such that $f_{1}(x) s=t g_{1}(x)=0$ since R is linearly McCoy. Then $f(x) \gamma=\delta g(x)=0$, where $\gamma=w^{-1} s, \delta=w^{-1} t$ and nonzero $w \in \Omega$. Therefore, $\Omega^{-1} R$ is linearly McCoy.
" \Leftarrow ". Suppose that $f(x)=a_{0}+a_{1} x$ and $g(x)=b_{0}+b_{1} x$ are nonzero elements of $R[x]$ with $f(x) g(x)=0$. Also, $f(x), g(x) \in \Omega^{-1} R[x] \backslash\{0\}$. Because $\Omega^{-1} R$ is linearly McCoy, there exist $\alpha=u^{-1} a, \beta=v^{-1} b \in \Omega^{-1} R \backslash\{0\}$ such that $f(x) \alpha=\beta g(x)=0$. It follows that $f(x) a=b g(x)=0$. Thus R is linearly McCoy.

The ring of Laurent polynomials in x, coefficients in a ring R, consisting of all formal sums $\sum_{i=k}^{n} m_{i} x^{i}$ with obvious addition and multiplication, where $m_{i} \in R$ and k, n are (possibly negative) integers; denote it by $R\left[x ; x^{-1}\right]$.
Corollary 2.5. For a ring $R, R[x]$ is linearly $M c C o y$ if and only if $R\left[x ; x^{-1}\right]$ is linearly McCoy.

Proof. Let $\Omega=\left\{1, x, x^{2}, \ldots\right\}$. Then Ω is a multiplicatively closed subset of $R[x]$ consisting entirely of central regular elements. Since $R\left[x ; x^{-1}\right]=\Omega^{-1} R[x]$, by Proposition 2.4, we are done.

3. Matrix rings and classical quotient rings

In this section, we study the property "linearly McCoy" of some subring of the upper triangular matrix ring; the trivial extension of a linearly McCoy ring and its classical quotient ring are also investigated.

Let R be a ring. We consider the ring

$$
R_{n}=\left\{\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a
\end{array}\right): a, a_{k l} \in R\right\}
$$

where $n(\geq 1)$ is a positive integer.
Proposition 3.1. For any $n \geq 1$, a ring R is linearly $M c C o y$ if and only if the ring R_{n} is linearly McCoy.
Proof. " \Rightarrow ". Let $H(x) \in R_{n}[x]$. Then $H(x)$ can be expressed as the form of a matrix, and the (i, j)-entry of $H(x)$ is denoted by $h_{i j}(x)=[H(x)]_{i, j}$. Clearly, $h_{i j}(x) \in R[x]$.

Suppose that $F(x), G(x)$ are nonzero linear polynomials of $R_{n}[x]$ with $F(x) G(x)=0$. We show that there exist $A, B \in R_{n} \backslash\{0\}$ such that $F(x) A=$ $B G(x)=0$. Now we proceed with the following cases.

Case 1. If $f_{11}(x) \neq 0, g_{11}(x) \neq 0$, then $f_{11}(x) g_{11}(x)=0$, where $f_{11}(x)=$ $[F(x)]_{1,1}, g_{11}(x)=[G(x)]_{1,1}$. Since R is linearly McCoy, there exist $s, t \in$ $R \backslash\{0\}$ such that $f_{11}(x) s=t g_{11}(x)=0$. Put $A=s E_{1 n}, B=t E_{1 n}$. Then $F(x) A=B G(x)=0$.

Case 2. If $f_{11}(x) \neq 0, g_{11}(x)=0$, then there exists $g_{k l}(x) \neq 0$ satisfying $g_{(k+u) l}(x)=0$ for some k, l and $1 \leq u \leq n-k$ since $G(x) \neq 0$. So $f_{11}(x) g_{k l}(x)=0$. Hence there exists $s \in R \backslash\{0\}$ such that $f_{11}(x) s=0$. Write $A=s E_{1 n}$. Then $F(x) A=A G(x)=0$.

Case 3. If $f_{11}(x)=0, g_{11}(x) \neq 0$, then there exist $A, B \in R_{n} \backslash\{0\}$ such that $F(x) A=B G(x)=0$. The proof is similar to Case 2.

Case 4. If $f_{11}(x)=0, g_{11}(x)=0$, then for any $s \in R \backslash\{0\}, F(x) A=$ $A G(x)=0$ with $A=s E_{1 n}$.

Therefore, R_{n} is linearly McCoy.
" \Leftarrow ". Assume that $f(x) g(x)=0$, where $f(x), g(x)$ are nonzero linearly polynomials of $R[x]$. Let $F(x)=f(x) E_{n}, G(x)=g(x) E_{n}$ with E_{n} the $n \times n$ identity matrix. Then $F(x), G(x) \in R_{n}[x] \backslash\{0\}$ and $F(x) G(x)=0$. Since R_{n} is linearly McCoy, there exist $A, B \in R_{n} \backslash\{0\}$ such that $F(x) A=B G(x)=0$. Obviously, there exist nonzero $a, b \in R$ such that $f(x) a=b g(x)=0$. So the proof is complete.

Given a ring R and an (R, R)-bimodule M, the trivial extension of R by M is the $\operatorname{ring} T(R, M)=R \oplus M$ with the usual addition and the following multiplication:

$$
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right) .
$$

This is isomorphic to the ring of all matrices

$$
\left(\begin{array}{cc}
r & m \\
0 & r
\end{array}\right),
$$

where $r \in R$ and $m \in M$ and the usual matrix operations are used.
Corollary 3.2. A ring R is linearly $M c C o y$ if and only if the trivial extension $T(R, R)$ is linearly McCoy.

However, the trivial extension $T(R, S)$ of a ring R by a ring S being right linearly McCoy does not imply that of S.
Example 3.3. Let K be a commutative ring, $R=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right): a \in K\right\}$ and $S=$ $\left\{\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right): a_{i j} \in K\right\}$. Then the ring R and the trivial extension $H=T(R, S)$ are right linearly McCoy, but S is not.
Proof. Since $R \cong K, R$ is a linearly McCoy ring. But S is not right linearly McCoy by [4, Proposition 10.2]. It is easy to check that S is an (R, R)-bimodule. We next show that $H=T(R, S)$ is right linearly McCoy. Let

$$
\begin{aligned}
& F(x)=\left(\begin{array}{cc}
\left(\begin{array}{cc}
f(x) & 0 \\
0 & f(x)
\end{array}\right) & \left(\begin{array}{cc}
f_{11}(x) & f_{12}(x) \\
0 & f_{22}(x)
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{cc}
f(x) & 0 \\
0 & f(x)
\end{array}\right)
\end{array}\right) \text { and } \\
& G(x)=\left(\begin{array}{cc}
\left(\begin{array}{cc}
g(x) & 0 \\
0 & g(x)
\end{array}\right) & \left(\begin{array}{cc}
g_{11}(x) & g_{12}(x) \\
0 & g_{22}(x)
\end{array}\right) \\
\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{cc}
g(x) & 0 \\
0 & g(x)
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

be nonzero linear polynomials of $H[x]$ with $F(x) G(x)=0$, where $f(x)=a+a^{\prime} x$, $f_{i j}(x)=a_{i j}+a_{i j}^{\prime} x, g(x)=b+b^{\prime} x, g_{i j}(x)=b_{i j}+b_{i j}^{\prime} x \in K[x]$ and $1 \leq i \leq$ $j \leq 2$. From $F(x) G(x)=0$, we have $f(x) g(x)=0, f(x) g_{11}(x)+f_{11}(x) g(x)=$ $0, f(x) g_{12}(x)+f_{12}(x) g(x)=0$ and $f(x) g_{22}(x)+f_{22}(x) g(x)=0$. For any $s \in K$, write $E_{12}(s)=\left(\begin{array}{ll}O & \left(\begin{array}{c}s \\ 0 \\ 0\end{array}\right) \\ O & 0\end{array}\right) \in H$.

Case 1. If $f(x)=0$, then for any nonzero $r \in K$, let $A=E_{12}(r)$. Then $F(x) E_{12}(r)=0$.

Case 2. If $f(x) \neq 0, g(x) \neq 0$, then there exists $s \in K \backslash\{0\}$ such that $f(x) s=0$ since $f(x) g(x)=0$ and K is linearly McCoy. Let $B=E_{12}(s)$. Then $F(x) B=0$.

Case 3. If $f(x) \neq 0, g(x)=0$, then $f(x) g_{11}(x)=f(x) g_{12}(x)=f(x) g_{22}(x)=$ 0 . Note that $G(x) \neq 0$. Without loss of generality, we may assume that $g_{11}(x) \neq$ 0 . So there exists $t \in K \backslash\{0\}$ such that $f(x) t=0$. Write $C=E_{12}(t)$. Then $F(x) C=0$.

Hence, H is a right linearly McCoy ring.
Remark 3.4. Based on Proposition 3.1, one may suspect that the matrix ring and the upper triangular matrix ring over a linearly McCoy ring are linearly McCoy. But it gives a negative answer by [4, Proposition 10.2]. So the linearly McCoy property is badly behaved with regards to Morita invariance.

In view of [5, Example 2.1], the class of linearly McCoy rings is not closed under homomorphic images. Nevertheless, we have the following theorem.

Theorem 3.5. Let R be a ring and n any positive integer. If R is linearly $M c$ Coy, then $R[x] /\left(x^{n}\right)$ is a linearly McCoy ring, where $\left(x^{n}\right)$ is the ideal generated by x^{n}.

Proof. Denote \bar{x} in $R[x] /\left(x^{n}\right)$ by u. Then $R[x] /\left(x^{n}\right) \cong R[u]=R+R u+\cdots+$ $R u^{n-1}$, where u commutes with elements in R and $u^{n}=0$.

Let $F(y)=f_{0}(u)+f_{1}(u) y, G(y)=g_{0}(u)+g_{1}(u) y$ be nonzero elements of $R[u][y]$ such that $F(y) G(y)=0$, where $f_{i}(u)=\sum_{p=0}^{n-1} a_{i}^{p} u^{p}$ and $g_{j}(u)=$ $\sum_{q=0}^{n-1} b_{j}^{q} u^{q}$ with $i, j=0,1$. Then

$$
\begin{aligned}
0 & =F(y) G(y) \\
& =\left(f_{0}(u)+f_{1}(u) y\right)\left(g_{0}(u)+g_{1}(u) y\right) \\
& =\left(\sum_{p=0}^{n-1} a_{0}^{p} u^{p}+\sum_{p=0}^{n-1} a_{1}^{p} u^{p} y\right)\left(\sum_{q=0}^{n-1} b_{0}^{q} u^{q}+\sum_{q=0}^{n-1} b_{1}^{q} u^{q} y\right) \\
& =\left[\sum_{p=0}^{n-1}\left(a_{0}^{p}+a_{1}^{p} y\right) u^{p}\right]\left[\sum_{q=0}^{n-1}\left(b_{0}^{q}+b_{1}^{q} y\right) u^{q}\right] .
\end{aligned}
$$

In particular, we have

$$
\begin{equation*}
\left(a_{0}^{0}+a_{1}^{0} y\right)\left(b_{0}^{k}+b_{1}^{k} y\right)=0 \tag{*}
\end{equation*}
$$

with minimal k such that $b_{0}^{k}+b_{1}^{k} y \neq 0$. Such k exists since $G(y) \neq 0$.
Assume that $a_{0}^{0}=a_{1}^{0}=0$. Let $h(u)=u^{n-1}$. Then $f_{0}(u) h(u)=f_{1}(u) h(u)=$ 0 , whence $F(y) h(u)=0$ since $u^{n}=0$.

Suppose that $a_{i}^{0} \neq 0$ for some i. Since R is linearly McCoy, Eq. (*) implies that there exists $r \in R \backslash\{0\}$ such that $\left(a_{0}^{0}+a_{1}^{0} y\right) r=0$. Let $h(u)=r u^{n-1}$. Then $f_{i}(u) h(u)=0$ for $i=0,1$, and thus $F(y) h(u)=0$.

Hence $R[x] /\left(x^{n}\right) \cong R[u]$ is right linearly McCoy. $R[x] /\left(x^{n}\right)$ is left linearly McCoy can be shown in the same manner.

A classical right quotient ring for R is a ring Q which contains R as a subring in such a way that every regular element (i.e., non-zero-divisor) of R is invertible in Q and $Q=\left\{a \mu^{-1}: a, \mu \in R, \mu\right.$ regular $\}$. The free algebra $L\langle x, y\rangle$ in two indeterminates over a field L is a well-known example of a domain which does not have a classical right quotient ring.

Theorem 3.6. Suppose that there exists the classical right quotient ring Q of a ring R. Then R is right linearly McCoy if and only if Q is right linearly McCoy.

Proof. " \Rightarrow ". Let $f(x)=\alpha_{0}+\alpha_{1} x$ and $g(x)=\beta_{0}+\beta_{1} x \in Q[x] \backslash\{0\}$ satisfy $f(x) g(x)=0$. By [13, Proposition 2.1.16], we may assume that $\alpha_{i}=$ $a_{i} u^{-1}, \beta_{j}=b_{j} v^{-1}$ with $a_{i}, b_{j} \in R$ for $i, j=0,1$ and regular elements $u, v \in R$. For each j, there exist $c_{j} \in R$ and a regular element $w \in R$ such
that $u^{-1} b_{j}=c_{j} w^{-1}$ also by [13, Proposition 2.1.16]. Denote $f_{1}(x)=a_{0}+a_{1} x$ and $g_{1}(x)=c_{0}+c_{1} x$. Then the equation

$$
\begin{aligned}
f_{1}(x) g_{1}(x)(v w)^{-1} & =\sum_{i=0}^{1} \sum_{j=0}^{1}\left(a_{i} c_{j}\right)(v w)^{-1} x^{i+j} \\
& =\sum_{i=0}^{1} \sum_{j=0}^{1} a_{i}\left(u^{-1} b_{j}\right) v^{-1} x^{i+j} \\
& =f(x) g(x)=0
\end{aligned}
$$

implies $f_{1}(x) g_{1}(x)=0$. Since R is right linearly McCoy, there exists $s \in R \backslash\{0\}$ such that $f_{1}(x) s=0$, i.e., $a_{i} s=0$ for $i=0,1$. Then $\alpha_{i}(u s)=a_{i} s=0$ for every i, which implies that $f(x)(u s)=0$ and $u s$ is nonzero in Q. This proves that Q is right linearly McCoy.
" \Leftarrow ". Let $f(x)=a_{0}+a_{1} x, g(x)=b_{0}+b_{1} x \in R[x] \backslash\{0\} \subseteq Q[x] \backslash\{0\}$ satisfy $f(x) g(x)=0$. Then there exists $\alpha \in Q \backslash\{0\}$ such that $f(x) \alpha=0$ since Q is right linearly McCoy. Because Q is a classical right quotient ring, we can take $\alpha=$ $a u^{-1}$ for some $a \in R \backslash\{0\}$ and regular element u. Then $f(x) a u^{-1}=f(x) \alpha=0$, implies that $f(x) a=0$. Therefore, R is a right linearly McCoy ring.

Goldie theorem reveals that if R is a semiprime two-sided Goldie ring, then R has the classical left and right quotient rings. Hence there exists a class of rings satisfying the following hypothesis.
Corollary 3.7. Suppose that there exists the classical left and right quotient ring Q of a ring R. Then R is linearly $M c C o y$ if and only if Q is linearly McCoy.

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
[2] G. M. Bergman, The Diamond Lemma for ring theory, Adv. Math. 29 (1978), no. 2, 178-218.
[3] A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci. 8 (2002), no. 1, 53-65.
[4] V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615.
[5] J. Cui and J. L. Chen, Linearly McCoy rings and their generalizations, Commun. Math. Res. 26 (2010), no. 2, 159-175.
[6]
[7] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52.
[8] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.
[9] Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146.
[10] M. T. Koşan, Extensions of rings having McCoy condition, Canad. Math. Bull. 52 (2009), no. 2, 267-272.
[11] T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
[12] Z. Lei, J. L. Chen, and Z. L. Ying, A question on McCoy rings, Bull. Aust. Math. Soc. 76 (2007), no. 1, 137-141.
[13] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.
[14] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295.
[15] P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.
[16] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.
[17] Z. L. Ying, J. L. Chen, and Z. Lei, Extensions of McCoy rings, Northeast. Math. J. 24 (2008), no. 1, 85-94.

Jian Cui
Department of Mathematics
Anhui Normal University
Wuhu 241000, P. R. China
E-mail address: jcui1635@gmail.com
Jianlong Chen
Department of Mathematics
Southeast University
Nanjing 210096, P. R. China
E-mail address: jlchen@seu.edu.cn

[^0]: Received April 8, 2012.
 2010 Mathematics Subject Classification. Primary 16U80; Secondary 16S99.
 Key words and phrases. polynomial ring, linearly McCoy ring, matrix ring, semicommutative ring, McCoy ring.

