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INSERTION-OF-FACTORS-PROPERTY

ON SKEW POLYNOMIAL RINGS

Muhittin Başer, Begüm Hiçyilmaz, Fatma Kaynarca, Tai Keun Kwak,

and Yang Lee

Abstract. In this paper, we investigate the insertion-of-factors-proper-
ty (simply, IFP) on skew polynomial rings, introducing the concept of
strongly σ-IFP for a ring endomorphism σ. A ring R is said to have
strongly σ-IFP if the skew polynomial ring R[x;σ] has IFP. We examine
some characterizations and extensions of strongly σ-IFP rings in relation
with several ring theoretic properties which have important roles in ring
theory. We also extend many of related basic results to the wider classes,
and so several known results follow as consequences of our results.

1. Introduction

Throughout this paper, all rings are associative with identity. We denote
by R[x] the polynomial ring with an indeterminate x over R. deg f(x) denotes
the degree of f(x) ∈ R[x]. Let Z and Zn denote the ring of integers and the
ring of integers modulo n, respectively.

Due to Bell [3], a ring R is called to satisfy the insertion-of-factors-property

(simply, an IFP ring) if ab = 0 implies aRb = 0 for a, b ∈ R. Narbonne [22]
and Shin [26] used the terms semicommutative and SI for the IFP, respectively.
Commutative rings have clearly IFP, and any reduced ring (i.e., a ring without
nonzero nilpotent elements) has IFP by a simple computation. A ring is called
Abelian if every idempotent is central. IFP rings are Abelian by a simple
computation.

Another generalization of a reduced ring is an Armendariz ring. Rege and
Chhawchharia [25] called a ring R Armendariz if whenever the product of any
two polynomials over a ring is zero, then so is the product of any pair of
coefficients from the two polynomials. The class of IFP rings and the class
of Armendariz rings do not imply each other by [25, Example 3.2] and [13,
Example 14]. Note that the polynomial rings over IFP rings need not have IFP
by [13, Example 2], but for an Armendariz ring R, R has IFP if and only if
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R[x] has IFP by [25, Proposition4.6]. Based on this result, Kwak et al. [19]
defined a strongly IFP ring: A ring R is called strongly IFP if R[x] has IFP.

For an endomorphism σ of a ring R, a skew polynomial ring (also called
an Ore extension of endomorphism type) R[x;σ] of R is the ring obtained by
giving the polynomial ring over R with the new multiplication xr = σ(r)x
for all r ∈ R. In R[x;σ], consider 1xn = xn = x1xn−1 = σ(1)xn for any
n ≥ 1 where 1 is the identity of R. So it is natural to set σ(1) = 1. The set
{xj}j≥0 is easily seen to be a left Ore subset of R[x;σ], so that one can localize
R[x;σ] and form the skew Laurent polynomial ring R[x, x−1;σ]. Every element
of R[x, x−1;σ] is a finite sum of elements of the form x−jrxi, where r ∈ R and
i, j are nonnegative integers.

According to Krempa [18], an endomorphism σ of a ring R is called rigid if
aσ(a) = 0 implies a = 0 for a ∈ R, and R is called a σ-rigid ring [8] if there
exists a rigid endomorphism σ of R. Note that any rigid endomorphism of a
ring is a monomorphism and σ-rigid rings are reduced rings by [8, Proposition
5], and R[x;σ] is a reduced ring if and only if R is σ-rigid by [9, Proposition 3]
and R is σ-rigid if and only if R[x, x−1;σ] is reduced by [23, Theorem 3].

Following Başer et al. [1, Definition 2.1], an endomorphism σ of a ring R is
called to have IFP if whenever ab = 0 for a, b ∈ R, aRσ(b) = 0, and a ring R is
called σ-IFP if there exists an endomorphism σ of R having IFP. A ring R is
σ-IFP if and only if for a, b ∈ R, ab = 0 implies aRσn(b) = 0 for all n ≥ 1 by
[1, Remark 2.2]. It is proved that a ring R is σ-rigid if and only if R is reduced
σ-IFP and σ is a monomorphism by [1, Theorem 2.4].

On the other hand, a ring R is called reversible [4] if ab = 0 implies ba = 0
for a, b ∈ R. Reversible rings have IFP by simple computation. The reversible
ring property cannot go up to polynomial rings by [17, Example 2.1]. Recently,
Kaynarca et al. called a ring R strongly σ-reversible [15, Definition 2.2] if the
skew polynomial ring R[x;σ] is reversible, and investigated some characteri-
zations and extensions of strongly σ-reversible rings. (We change over from
“strongly σ-skew reversible” in [15] to “strongly σ-reversible”, so as to cohere
with other related definitions.)

Motivated by the above, in this paper, we extend the insertion-of-factors-
property of elements and polynomials to one of skew polynomials. We give
a generalization of σ-rigid rings and an extension of strongly IFP rings, in-
troducing the concept of a strongly σ-IFP ring for an endomorphism σ of a
ring. Then the structure of strongly σ-IFP rings and their related properties
including extensions are studied and the relations between strongly σ-IFP rings
and generalized reduced rings is also investigated. Consequently, several known
results are obtained as corollaries of our results.

From now on, σ denotes a nonzero and non identity endomorphism of each
given ring, unless specified otherwise.
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2. Strongly σ-IFP rings and related properties

Firstly we start by giving the following example.

Example 2.1. Consider the ring R = Z2 ⊕ Z2 with the usual addition and
multiplication. Then R has IFP since R is reduced. Let σ : R → R be defined
by σ((a, b)) = (b, a). For p(x) = (1, 0), q(x) = (0, 1)x in R[x;σ], p(x)q(x) = 0
but p(x)xq(x) = (1, 0)x2 6= 0 for x ∈ R[x;σ]. Thus R[x;σ] does not have IFP.

We can give the following definition.

Definition 2.2. For an endomorphism σ of a ring R with σ(1) = 1, R is called
strongly σ-IFP if R[x;σ] has IFP.

Every strongly σ-IFP ring has IFP (and so Abelian), and every subring S
with σ(S) ⊆ S of a strongly σ-IFP ring is also strongly σ-IFP. We will freely
use these facts without reference. Every domain D with a monomorphism σ is
clearly strongly σ-IFP, since D is σ-rigid. Any strongly σ-reversible rings are
clearly strongly σ-IFP, but not conversely by the following example.

Example 2.3. Consider the polynomial ring R = Z[t]. Define σ : R → R by
σ(f(t)) = f(0) where f(t) ∈ R. Then R is not strongly σ-reversible by [15,
Example 2.6(2)].

Now, we will show that R is strongly σ-IFP. Suppose that p(x)q(x) = 0 for
p(x) = f0(t) + f1(t)x+ · · ·+ fm(t)xm, q(x) = g0(t) + g1(t)x+ · · ·+ gn(t)x

n in
R[x;σ], where fi(t), gj(t) ∈ R for all i, j. Without loss of generality, assume
that p(x) 6= 0.

Case 1. Suppose that f0(t) 6= 0. From f0(t)g0(t) = 0, we have g0(t) = 0
since R is a domain. From f0(t)g1(t) + f1(t)σ(g0(t)) = 0 and g0(t) = 0, we
get g1(t) = 0. Since f0(t)g2(t) + f1(t)σ(g1(t)) + f2(t)σ

2(g0(t)) = 0, we obtain
g2(t) = 0. Continuing this process, we have that g0(t) = g1(t) = · · · = gn(t) =
0, i.e., q(x) = 0. Thus p(x)R[x;σ]q(x) = 0.

Case 2. Suppose that there is fk(t) 6= 0 with f0(t) = · · · = fk−1(t) = 0,
where 0 < k ≤ m. Since f0(t)gk(t)+f1(t)σ(gk−1(t))+· · ·+fk−1(t)σ

k−1(g1(t))+
fk(t)σ

k(g0(t)) = 0, we have fk(t)σ
k(g0(t)) = 0. Since R is a domain and fk(t) 6=

0, σk(g0(t)) = 0 and so σ(g0(t)) = 0. From f0(t)gk+1(t) + f1(t)σ(gk(t)) + · · ·+
fk(t)σ

k(g1(t)) + fk+1(t)σ
k+1(g0(t)) = 0, we have fk(t)σ

k(g1(t)) = 0 and so
σk(g1(t)) = σ(g1(t)) = 0 by the same argument as above. Continuing this
process, we obtain σ(gj(t)) = 0 for all 0 ≤ j ≤ n. This entails xq(x) = 0, and
hence p(x)(rxs)q(x) = 0 for any r ∈ R and s ≥ 0, noting that p(x)rq(x) =
rp(x)q(x) = 0. This yields p(x)R[x;σ]q(x) = 0.

By the computations in Cases 1 and 2, we can conclude that R is strongly
σ-IFP.

Note that the endomorphism σ of strongly σ-IFP rings need not be a mono-
morphism by Example 2.3.
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Let R be a ring with an endomorphism σ and p(x) =
∑m

i=0 aix
i and q(x) =

∑n

j=0 bjx
j in R[x;σ]. Recall that a ring R is called σ-skew Armendariz [9,

Definition] if whenever p(x)q(x) = 0, aiσ
i(bj) = 0 for all 0 ≤ i ≤ m and 0 ≤

j ≤ n, and R is called σ-skew quasi-Armendariz [10, Definition 2.1] if whenever
p(x)R[x;σ]q(x) = 0, aiRσi(bj) = 0 for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Any σ-
rigid ring is σ-skew Armendariz by [9, Corollary 4], and the concepts of σ-skew
Armendariz rings and strongly σ-IFP rings do not imply each other, by help of
[13, Example 14] and [25, Example 3.2]. Notice that any σ-skew Armendariz
ring is clearly σ-skew quasi-Armendariz, when σ is an epimorphism.

Proposition 2.4. (1) If R is a strongly σ-IFP ring, then R has both IFP and

σ-IFP.
(2) Let R be a σ-skew Armendariz ring and σ an epimorphism. Then R has

both IFP and σ-IFP if and only if R is strongly σ-IFP.
(3) Let R be a strongly σ-IFP ring and σ an epimorphism. Then R is σ-skew

Armendariz if and only if R is σ-skew quasi-Armendariz.

(4) If R is a strongly σ-IFP ring, then σ(e) = e for any e2 = e ∈ R.

Proof. (1) Assume that R is strongly σ-IFP. Let ab = 0 for a, b ∈ R. Since
aR[x;σ]b = 0, arb = 0 and asxb = 0 for any r, s ∈ R. Hence aRb = 0 and
aRσ(b) = 0, showing that R has both IFP and σ-IFP.

(2) It is enough to show the necessity by (1). Assume that R has IFP and σ-
IFP. Let p(x)q(x) = 0 for p(x) =

∑m

i=0 aix
i, q(x) =

∑n

j=0 bjx
j ∈ R[x;σ]. Then

aiσ
i(bj) = 0 for all i, j, since R is σ-skew Armendariz. Hence aiRσt+i(bj) = 0

and so (aix
i)(Rxt)bj = 0 for all i, j and t ≥ 0 by assumption. This implies

p(x)(cxt)q(x) = 0 for any c ∈ R and t ≥ 0. Therefore p(x)R[x;σ]q(x) = 0,
proving that R is strongly σ-IFP.

(3) Suppose that R is σ-skew quasi-Armendariz and p(x)q(x) = 0 for p(x) =
∑m

i=0 aix
i and q(x) =

∑n

j=0 bjx
j in R[x;σ]. Since R is strongly σ-IFP,

p(x)R[x;σ]q(x) = 0, and so aiRσi(bj) = 0 for all i and j by hypothesis. Thus
aiσ

i(bj) = 0, completing the proof.
(4) Since R[x;σ] has IFP, it is Abelian. Thus ex = xe for any e2 = e ∈ R,

and so σ(e) = e. �

Corollary 2.5. (1) If R is a strongly σ-IFP ring, then R is Abelian.

(2) If R is an Armendariz ring, then R has IFP if and only if R is strongly

IFP.

(3) If R is strongly IFP, then R is Armendariz if and only if R is quasi-

Armendariz (i.e., whenever f(x)R[x]g(x) = 0 for f(x) =
∑m

i=0 aix
i, g(x) =

∑n

j=0 bjx
j ∈ R[x], aiRbj = 0 for all i, j [7]).

Proof. Each proof comes directly from Proposition 2.4(1,2,3). �

The following illustrates Proposition 2.4(1,2) in detail.
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Example 2.6. We refer to the argument and ring construction in [16, Example
2.8]. Consider the free algebra A = Z2〈a0, a1, a2, b0, b1, b2, c〉 with noncommut-
ing indeterminates a0, a1, a2, b0, b1, b2, c over Z2. Define an automorphism α of
A by

a0, a1, a2, b0, b1, b2, c 7→ b0, b1, b2, a0, a1, a2, c,

respectively. Let B be the set of all polynomials with zero constant terms in A
and consider the ideal I of A generated by

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2),

a0a0, a2a2, a0ra0, a2ra2, b0b0, b2b2, b0rb0, b2rb2, r1r2r3r4,

a0a1 + a1a0, a0a2 + a1a1 + a2a0, a1a2 + a2a1,

b0b1 + b1b0, b0b2 + b1b1 + b2b0, b1b2 + b2b1,

(a0 + a1 + a2)r(a0 + a1 + a2), (b0 + b1 + b2)r(b0 + b1 + b2),

where r, r1, r2, r3, r4 ∈ B. Then clearly B4 ⊆ I. Set R = A/I. Since α(I) ⊆ I,
we can obtain an automorphism σ of R by defining σ(s + I) = α(s) + I for
s ∈ A. Note that σ2 = 1R, where 1R denotes the identity endomorphism of R.
We identify every element of A with its image in R for simplicity. Then R has
both IFP and σ-IFP by [16, Example 2.8].

However,R is neither strongly σ-IFP nor σ-skew Armendariz. For a0+a1x
2+

a2x
4, b0+b1x

2+b2x
4 ∈ R[x;σ], we have (a0+a1x

2+a2x
4)(b0+b1x

2+b2x
4) = 0.

But

(a0 + a1x
2 + a2x

4)cx(b0 + b1x
2 + b2x

4)

= (a0 + a1x
2 + a2x

4)c(α(b0) + α(b1)x
2 + α(b2)x

4)x

= (a0 + a1x
2 + a2x

4)c(a0 + a1x
2 + a2x

4)x 6= 0

since a0ca1 + a1ca0 6= 0, showing that R[x;σ] does not have IFP. Furthermore,
we obtain a0b1 6= 0 from (a0 + a1x

2 + a2x
4)(b0 + b1x

2 + b2x
4) = 0, entailing

that R is not σ-skew Armendariz.

Let σγ be an endomorphism of a ring Rγ for each γ ∈ Γ. Then the map
σ :
∏

γ∈ΓRγ →
∏

γ∈Γ Rγ defined by σ((aγ)γ) = (σγ(aγ))γ for (aγ)γ ∈
∏

γ∈ΓRγ

is an endomorphism of the product
∏

γ∈ΓRγ .

A ring R is called local if R/J(R) is a division ring where J(R) denotes the
Jacobson radical of R, R is called semilocal if R/J(R) is semisimple Artinian,
and R is called semiperfect if R is semilocal and idempotents can be lifted
modulo J(R). Local rings are Abelian and semilocal.

Proposition 2.7. (1) Let Rγ be a ring with an endomorphism σγ for each

γ ∈ Γ. The following are equivalent:
(i) Rγ is strongly σγ-IFP for each γ ∈ Γ.
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(ii) The direct product
∏

γ∈ΓRγ of Rγ , (γ ∈ Γ) is strongly σ-IFP.

(iii) The direct sum of Rγ, (γ ∈ Γ) is strongly σ-IFP.
(2) Let σ be an endomorphism of a ring R with σ(e) = e for any e2 = e ∈ R.

Then we have the following.

(i) R is strongly σ-IFP and semiperfect if and only if R is a finite direct sum

of local strongly σγ-IFP rings for γ ∈ Γ.
(ii) For a central idempotent e of R, eR and (1− e)R are strongly σ-IFP if

and only if R is strongly σ-IFP.

Proof. (1) It is enough to show (i)⇒(ii). Assume (i) and let p(x)q(x) = 0
where p(x) = (pγ(x))γ , q(x) = (qγ(x))γ ∈

∏

γ∈ΓRγ [x;σ]. Then pγ(x)qγ(x) =

0 for each γ ∈ Γ, where pγ(x), qγ(x) ∈ Rγ [x;σγ ]. By hypothesis, we have
pγ(x)(rγx

s)qγ(x) = 0 for every rγ ∈ Rγ , any s ≥ 0 and each γ ∈ Γ and this
implies that p(x)(rxs)q(x) = 0 for every r = (rγ)γ ∈

∏

γ∈ΓRγ and s ≥ 0.
Therefore the direct product of Rγ is strongly σ-IFP.

(2)-(i) Suppose thatR is strongly σ-IFP and semiperfect. Since R is semiper-
fect, R has a finite orthogonal set {e1, e2, . . . , en} of local idempotents whose
sum is 1 by [20, Proposition 3.7.2], say R =

∑n

i=1 eiR such that each eiRei is
a local ring. Since R is Abelian by Corollary 2.5(1). Thus each eiR is an ideal
of R with eiR = eiRei. But each eiR is also a strongly σ-IFP ring as a subring
since σ(eiR) ⊆ eiR for each i by assumption.

Conversely assume that R is a finite direct sum of strongly σγ-IFP local
rings. Then R is semiperfect since local rings are semiperfect, and moreover R
is strongly σ-IFP by (1).

(2)-(ii) It comes from (1) with R ∼= eR⊕ (1− e)R, since the class of strongly
σ-IFP is closed under subrings. �

Let R be a ring and σ be a monomorphism of R. Now we consider the
Jordan’s construction of an over-ring of R by σ (see [14] for more details).
Let A(R, σ) be the subset

{

x−irxi | r ∈ R and i ≥ 0
}

of the skew Laurent

polynomial ring R[x, x−1;σ]. Note that for j ≥ 0, xjr = σj(r)xj implies
rx−j = x−jσj(r) for r ∈ R. This yields that for each j ≥ 0 we have x−irxi =
x−(i+j)σj(r)xi+j . It follows that A(R, σ) forms a subring of R[x, x−1;σ] with
the following natural operations: x−irxi+x−jsxj = x−(i+j)(σj(r)+σi(s))xi+j

and (x−irxi)(x−jsxj) = x−(i+j)σj(r)σi(s)xi+j for r, s ∈ R and i, j ≥ 0. Note
that A(R, σ) is an over-ring of R, and σ is actually an automorphism of A(R, σ)
with σ(x−irxi) = x−iσ(r)xi. Jordan showed, with the use of left localization of
the skew polynomial R[x;σ] with respect to the set of powers of x, that for any
pair (R, σ), such an extension A(R, σ) always exists in [14]. This ring A(R, σ)
is usually said to be Jordan extension of R by σ.

Proposition 2.8. Let R be a ring and σ a monomorphism of R. Then R is a

strongly σ-IFP ring if and only if so is A(R, σ).

Proof. It is enough to show the necessity. Let A = A(R, σ) =
{

t−irti | r ∈ R
and i ≥ 0}, using t in place of x in the argument above. Suppose that R is
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strongly σ-IFP and let p(x)q(x) = 0 for p(x) =
∑m

i=0 aix
i, q(x) =

∑n

j=0 bjx
j ∈

A[x;σ], where ai = t−v(i)a′it
v(i) and bj = t−u(j)b′jt

u(j) for a′i, b
′
j ∈ R and

v(i), u(j) ≥ 0. We use the property that x−irxi = x−(i+j)σj(r)xi+j for each
j ≥ 0 and that σ is an automorphism of A. Then we can express all ai, bj by

ai = t−sαit
s and bj = t−sβjt

s

for some s ≥ 0 and αi, βj ∈ R. This yields that

0 =
m+n
∑

k=0





∑

k=i+j

aiσ
i(bj)



 xk =
m+n
∑

k=0





∑

k=i+j

t−sαit
sσi(t−sβjt

s)



 xk

=
m+n
∑

k=0





∑

k=i+j

t−sαit
st−sσi(βj)t

s



xk= t−s





m+n
∑

k=0





∑

k=i+j

αiσ
i(βj)



xk



 ts.

This entails
∑m+n

k=0

(

∑

k=i+j αiσ
i(βj)

)

xk = 0. Next let

p′(x) =
m
∑

i=0

αix
i and q′(x) =

n
∑

j=0

βjx
j ∈ R[x;σ].

Then we get p′(x)q′(x) = 0 by the result above, noting that p(x) = t−sp′(x)ts

and q(x) = t−sq′(x)ts. Since R is strongly σ-IFP, p′(x)(rxl)q′(x) = 0 for all
r ∈ R and l ≥ 0, entailing that

(∗) t−up′(x)(rxl)q′(x)tu = 0 for any u ≥ 0.

Let a = t−crtc ∈ A with r ∈ R. Here we can let c = s, after resetting c or s in
the expression of ai, bj if necessary. Now we have

p(x)(axl)q(x) = (t−sp′(x)ts)(axl)(t−sq′(x)ts)

= (t−sp′(x)ts)(t−srtsxl)(t−sq′(x)ts)

= t−sp′(x)rtst−sxlq′(x)ts

= t−sp′(x)rxlq′(x)ts

= 0

by the equality (∗). This implies that p(x)A[x;σ]q(x) = 0, and therefore A is
strongly σ-IFP. �

Proposition 2.9. Let α : R → S be a ring isomorphism. Then R is a strongly

σ-IFP if and only if S is a strongly ασα−1-IFP ring.

Proof. Note that p(x) =
∑m

i=0 aix
i, q(x) =

∑n

j=0 bjx
j ∈ R[x;σ] if and only

if p′(x) =
∑m

i=0 a
′
ix

i, q′(x) =
∑n

j=0 b
′
jx

j ∈ S[x;ασα−1], letting α(ai) = a′i,

α(bj) = b′j ∈ S for all i and j, and also that r ∈ R if and only if r′ ∈ S, letting

α(r) = r′, since α is bijective.
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For any r ∈ R and s ≥ 0,

p(x)(rxs)q(x) = 0 in R[x;σ]

⇔

m+n
∑

k=0





∑

i+j=k

aiσ
i(rσs(bj))



 xk+s = 0

⇔

m+n
∑

k=0





∑

i+j=k

α(aiσ
i(rσs(bj)))



 xk+s = 0, since α is bijective

⇔

m+n
∑

k=0





∑

i+j=k

α(ai)α(σ
i(rσs(bj)))



 xk+s = 0

⇔

m+n
∑

k=0





∑

i+j=k

α(ai)(ασα
−1)i

(

α(r)(ασα−1)sα(bj)
)



 xk+s = 0,

since (ασα−1)t = ασtα−1 for any positive integer t

⇔

m+n
∑

k=0





∑

i+j=k

a′i(ασα
−1)i

(

r′(ασα−1)s(b′j)
)



 xk+s = 0

⇔ p′(x)(r′xs)q′(x) = 0 in S[x;ασα−1] for any r′ ∈ S and s ≥ 0. �

Theorem 2.10. A ring R is σ-rigid if and only if R is a semiprime strongly

σ-IFP ring and σ is a monomorphism of R.

Proof. If R is σ-rigid (i.e., R[x;σ] is reduced), then R is clearly strongly σ-IFP,
and moreover R is reduced (so semiprime) and σ is a monomorphism by [8,
Proposition 5].

Now, suppose that R is semiprime strongly σ-IFP and σ is a monomorphism
of R. Let σ(a)a = 0 for a ∈ R. Since R is σ-IFP, σ(a)Rσ(a) = 0. Then σ(a) = 0
and so a = 0 by hypothesis. By [12, Proposition 2.4], R is σ-rigid. �

The following example shows that the conditions “R is a semiprime ring”
and “σ is a monomorphism” in Theorem 2.10 cannot be dropped, respectively.

Example 2.11. (1) Consider a ring

R =

{(

a b
0 a

)

| a, b ∈ Z

}

.

Let σ : R → R be an automorphism defined by

σ

((

a b
0 a

))

=

(

a −b
0 a

)

.

Clearly, R is not semiprime and so R is not σ-rigid. By [15, Propostion 2.13],
R is strongly σ-reversible and hence R is strongly σ-IFP.
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(2) Recall the strongly σ-IFP ring R = Z[t] and the endomorphism σ of R
which is not a monomorphism, as in Example 2.3. Then R is a domain and so
semiprime. But R is not σ-rigid, since xσ(x) = 0 for 0 6= x ∈ R.

Jordan’s construction also yields R[x, x−1;σ] ∼= A(R, σ)[x, x−1;σ], by way of
an isomorphism defined by x−irxj 7→ σi(r)xj−i, noting σi(r) = σi(r)x−uxu =
x−uσu+i(r)xu for any u ≥ 0 and r ∈ R. So Proposition 2.8 provides the
following.

Corollary 2.12. Let R be a semiprime ring and σ a monomorphism of R.

Then the following are equivalent:
(1) R is strongly σ-reversible.
(2) R is strongly σ-IFP.
(3) R is σ-IFP.
(4) R is σ-rigid.
(5) R[x, x−1;σ] is a reduced ring.

(6) A(R, σ) is strongly σ-reversible.
(7) A(R, σ) is strongly σ-IFP.
(8) A(R, σ) is σ-IFP.
(9) A(R, σ) is σ-rigid.

Proof. (4)⇒(1)⇒(2)⇒(3) and (9)⇒(6)⇒(7)⇒(8) are obvious. (3)⇒(4) and
(8)⇒(9) follow from the proof of Theorem 2.10, and (2)⇔(7) is shown by
Proposition 2.8. We see that R is σ-rigid if and only if R[x, x−1;σ] is reduced,
in [23, Theorem 3]. Since R[x, x−1;σ] is isomorphic to A(R, σ)[x, x−1;σ], we
can obtain the equivalence of (4) and (5). �

McCoy [21] showed that if two polynomials annihilate each other over a
commutative ring, then each polynomial has a nonzero annihilator in the
base ring. Nielsen [24] and Rege-Chhawchharia [25] called a noncommutative
ring R right McCoy (resp., left McCoy) if whenever any nonzero polynomials
f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then f(x)c = 0 (resp., cg(x) = 0) for
some nonzero c ∈ R, and a ring R is called McCoy if it is both left and right
McCoy. Reversible rings are McCoy by [24, Theorem 2], but there exists an
IFP ring which is not McCoy [24, Section 3]. The McCoy condition on a ring
is also extended on the skew polynomial ring. A ring R is called σ-skew Mc-

Coy [2, Defiition 1] if for any nonzero polynomials p(x) and q(x) ∈ R[x;σ],
p(x)q(x) = 0 implies p(x)c = 0 for some nonzero c ∈ R.

Proposition 2.13. If R is a strongly σ-IFP ring, then R is a σ-skew McCoy

ring.

Proof. Suppose that R is a strongly σ-IFP ring. Let p(x)q(x) = 0 for any
nonzero skew polynomials p(x), q(x) ∈ R[x;σ]. Then p(x)R[x;σ]q(x) = 0. By
[11, Theorem 1], there exists 0 6= c ∈ R such that p(x)R[x;σ]c = 0 and so
p(x)c = 0, showing that R is σ-skew McCoy. �
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Corollary 2.14 ([19, Proposition 3.19]). If R is a strongly IFP ring, then R
is a McCoy ring.

3. Examples of strongly σ-IFP rings

Let R be an algebra over a commutative ring S. Following [5], the Dorroh

extension of R by S is the Abelian group D = R⊕S with multiplication given
by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2), where ri ∈ R and si ∈ S. For
an endomorphism α of R and the Dorroh extension D of R by S, ᾱ : D → D
defined by ᾱ(r, s) = (α(r), s) is an S-algebra homomorphism.

Theorem 3.1. Let R be an algebra over a commutative domain S and σ an

endomorphism of R. Then R is strongly σ-IFP if and only if the Dorroh ex-

tension D of R by S is strongly σ̄-IFP.

Proof. Recall that σ(1) = 1 and note that s ∈ S is identified with s1 ∈ R and
so R = {r+s | (r, s) ∈ D}. It is sufficient to show that the Dorroh extension D
is strongly σ̄-IFP when R is strongly σ-IFP. Assume that R is strongly σ-IFP.
Let p(x)q(x) = 0 for p(x) =

∑m

i=0(ai, bi)x
i, q(x) =

∑n

j=0(cj , dj)x
j ∈ D[x; σ̄].

Then we have
(1)

m+n
∑

k=0





∑

i+j=k

(ai, bi)σ̄
i(cj , dj)



 xk =

m+n
∑

k=0





∑

i+j=k

(ai, bi)(σ
i(cj), dj)



 xk = 0.

Put f(x) =
∑m

i=0 bix
i, g(x) =

∑n

j=0 djx
j ∈ S[x], then we get f(x)g(x) = 0 by

Eq. (1). Since S[x] is a domain, f(x) = 0 or g(x) = 0. Note that σ(s) = s for
all s ∈ S, since σ(1) = 1. We will freely use this fact without reference in the
following procedure.

If f(x) = 0, then we have
∑m+n

k=0

(

∑

i+j=k(ai(σ
i(cj) + dj), 0)

)

xk = 0 by

Eq. (1), and so we get

(2) 0 =
m+n
∑

k=0





∑

i+j=k

ai(σ
i(cj) + dj)



xk =
m+n
∑

k=0





∑

i+j=k

aiσ
i(cj + dj)



 xk.

We let p′(x) =
∑m

i=0 aix
i, q′(x) =

∑n

j=0(cj + dj)x
j ∈ R[x;σ]. Then we get

p′(x)q′(x) = 0 by Eq. (2). Since R is strongly σ-IFP, p′(x)((r + s)xt)q′(x) = 0
for any r + s ∈ R and t ≥ 0, and we obtain

0 =

m+n
∑

k=0





∑

i+j=k

aiσ
i((r + s)σt(cj + dj))



 xk+t

=

m+n
∑

k=0





∑

i+j=k

ai(σ
i(r) + s)(σi+t(cj) + dj)



xk+t.
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Hence,

m+n
∑

k=0





∑

i+j=k

(ai, 0)σ̄
i
(

(r, s)σ̄t((cj , dj))
)



 xk+t

=
m+n
∑

k=0





∑

i+j=k

(ai, 0)(σ
i(r), s)(σi+t(cj), dj)



 xk+t

=
m+n
∑

k=0





∑

i+j=k

(ai(σ
i(r) + s)(σi+t(cj) + dj), 0)



 xk+t = 0,

showing that p(x)(r, s)xtq(x) = 0 for any (r, s) ∈ D and t ≥ 0.
In case of g(x) = 0, we can show that p(x)(r, s)xtq(x) = 0 for any (r, s) ∈ D

and t ≥ 0 by the similar argument to above.
Consequently, the Dorroh extension D of R by S is strongly σ̄-IFP if R is

strongly σ-IFP. �

By Proposition 2.7(2-ii) and Theorem 3.1, we have the following.

Corollary 3.2 ([19, Proposition 3.17]). (1) For a central idempotent e of a

ring R, R is strongly IFP if and only if eR and (1 − e)R are strongly IFP.

(2) Let R be an algebra over a commutative domain S, and D be the Dorroh

extension of R by S. Then R is strongly IFP if and only if D is strongly IFP.

Recall that if σ is an endomorphism of a ring R, then the map σ̄ : R[x] →
R[x] defined by

σ̄

(

m
∑

i=0

aix
i

)

=

m
∑

i=0

σ(ai)x
i

is an endomorphism of R[x]. This map extends σ clearly.

Theorem 3.3. Let R be a ring with an endomorphism σ such that σt = 1R
for some positive integer t, where 1R denotes the identity endomorphism of R.

Then R is strongly σ-IFP if and only if R[x] is strongly σ̄-IFP.

Proof. We apply the proof of [15, Theorem 3.6]. Assume that R is strongly
σ-IFP, and let p(y) = f0(x) + f1(x)y+ · · ·+ fm(x)ym, q(y) = g0(x) + g1(x)y+
· · ·+ gn(x)y

n in R[x][y; σ̄] such that p(y)q(y) = 0. Let

fi(x) = ai0 + ai1x+ · · ·+ aiwi
xwi and gj(x) = bj0 + bj1x+ · · ·+ bjvj x

vj

for each 0 ≤ i ≤ m, and 0 ≤ j ≤ n, where ai0 ,. . . ,awi
, bj0 , . . . , bvj ∈ R. Set

C = {ai0 , . . . , aiwi
, bj0 , . . . , bjvj | 0 ≤ i ≤ m and 0 ≤ j ≤ n}.

Let R[y;σ] be the skew polynomial ring with an indeterminate y over R,
subject to yr = σ(r)y for r ∈ R. We can rewrite p(y) and q(y) by

h0(y) + h1(y)x+ · · ·+ hu(y)x
u and l0(y) + l1(y)x+ · · ·+ ls(y)x

s ∈ R[y;σ][x],
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where hi(y), lj(y) ∈ R[y;σ], and R[y;σ][x] is the polynomial ring with an inde-
terminate x over R[y;σ]. Set h(x) = p(y) and l(x) = q(y), then h(x)l(x) = 0.

Take a positive integer k such that k is larger than the maximal integer in

{deg hi(y), deg lj(y) | 0 ≤ i ≤ u and 0 ≤ j ≤ s},

where the degree of zero polynomial is taken to be 0. Set

h(ytk) = h0(y) + h1(y)y
tk + · · ·+ hu(y)y

mtk and

l(ytk) = l0(y) + l1(y)y
tk + · · ·+ ls(y)y

ntk.

Then h(ytk), l(ytk) ∈ R[y;σ]. Note that the set of coefficients of the hi(y)’s
(resp., lj(y)’s) equals the set of coefficients of h(ytk) (resp., l(ytk)). Moreover
this set is equal to the set C. Therefore, since p(y)q(y) = 0 = h(x)l(x) and
σtk = 1R, we get h(y

tk)l(ytk) = 0 in R[y;σ], noting that σ̄(r) = σ(r) for r ∈ R.
Then we have h(ytk)ryγ l(ytk) = 0 for any r ∈ R and γ ≥ 0, since R is strongly
σ-IFP. Then

m+n
∑

ι=0





∑

i+j=ι

aλi
σλi(rσγ(bǫj ))



 yι+γ = 0 for all λi and ǫj.

Thus
∑

i+j=ι hi(y)(ry
γ)lj(y) = 0 for each 0 ≤ ι ≤ m+ n since σtk = 1R,

entailing p(y)(ryγ)q(y) = 0 for any r ∈ R and γ ≥ 0. Therefore R[x] is
strongly σ̄-IFP.

The converse comes from the fact that the class of strongly σ-IFP rings is
closed under subrings, recalling that σ̄(r) = σ(r) for r ∈ R. �

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all
formal sums

∑n

i=k aix
i with the usual addition and multiplication, where ai ∈

R and k, n are (possibly negative) integers. We denote this ring by R[x;x−1].
The map σ̄ : R[x;x−1] → R[x;x−1] defined by σ̄(

∑n

i=k aix
i) =

∑n

i=k σ(ai)x
i

extends σ and is also an endomorphism of R[x;x−1].

Proposition 3.4. Let R be a ring with an endomorphism σ such that σt = 1R
for some positive integer t. Then R is strongly σ-IFP if and only if R[x;x−1]
is strongly σ̄-IFP.

Proof. Assume that R is strongly σ-IFP, and let p(y) = f0(x) + f1(x)y + · · ·+
fm(x)ym, q(y) = g0(x) + g1(x)y + · · · + gn(x)y

n in R[x;x−1][y; σ̄] such that
p(y)q(y) = 0. Let

fi(x) =

wi
∑

u=si

aux
u and gj(x) =

zj
∑

v=kj

bvx
v

for each 0 ≤ i ≤ m, and 0 ≤ j ≤ n, where asi ,. . . ,awi
, bkj

, . . . , bzj ∈ R and
si, wi, kj , zj ∈ Z. Take positive integers s and k such that s = max{|si| |
i = 0, 1, . . . ,m} and k = max{|kj | | j = 0, 1, . . . , n}. Let p(y) = xsf(y) =
f ′
0(x)+f ′

1(x)y+ · · ·+f ′
m(x)ym, q(y) = xkg(y) = g′0(x)+g′1(x)y+ · · ·+g′n(x)y

n,
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where f ′
i(x) = fi(x)x

s and g′j(x) = gj(x)x
k. By the similar computation to the

proof of Theorem 3.3, we can show that R[x;x−1] is strongly σ̄-IFP. �

By Theorem 3.3 and Proposition 3.4, we obtain the following result which
includes [19, Theorem 3.14].

Corollary 3.5. For a ring R, the following are equivalent:
(1) R is strongly IFP.

(2) R[x] is strongly IFP.

(3) R[x;x−1] is strongly IFP.

An element u of a ring R is right regular if ur = 0 implies r = 0 for r ∈ R.
Similarly, left regular is defined, and regularmeans if it is both left and right reg-
ular (and hence not a zero divisor). Assume that M is a multiplicatively closed
subset of R consisting of central regular elements. Let σ be an automorphism
of R and assume σ(m) = m for every m ∈ M . Then σ(m−1) = m−1 in M−1R
and the induced map σ̄ : M−1R → M−1R defined by σ̄(u−1a) = u−1σ(a) is
also an automorphism.

Proposition 3.6. Let R be a ring with an automorphism σ and assume that

there exists a multiplicatively closed subset M of R consisting of central regular

elements and σ(m) = m for every m ∈ M . Then R is a strongly σ-IFP ring if

and only if M−1R is a strongly σ̄-IFP ring.

Proof. Let R be a strongly σ-IFP, and suppose that P (x)Q(x) = 0 for P (x) =
u−1(a0 + a1x+ · · ·+ akx

k), Q(x) = v−1(b0 + b1x+ · · ·+ bnx
n) ∈ M−1R[x; σ̄].

Then

0 = P (x)Q(x)

= u−1(a0v
−1 + a1σ(v)

−1x+ · · ·+ akσ
k(v)−1xk)(b0 + b1x+ · · ·+ bnx

n).

Since σi(v)−1 = v−1 for 0 ≤ i ≤ k by hypothesis, we have

0 = P (x)Q(x)

= (uv)−1(a0 + a1x+ · · ·+ akx
k)(b0 + b1x+ · · ·+ bnx

n).

Let p(x) = a0 + a1x + · · · + akx
k and q(x) = b0 + b1x + · · · + bnx

n ∈ R[x].
Then we get p(x)q(x) = 0 and hence p(x)R[x;σ]q(x) = 0, since R is a strongly
σ-IFP. Then for any r−1s ∈ M−1R and t ≥ 0,

P (x)(r−1sxt)Q(x)

= u−1(a0 + a1x+ · · ·+ akx
k)(r−1sxt)v−1(b0 + b1x+ · · ·+ bnx

n)u−1

= (urv)−1p(x)(sxt)q(x) = 0,

by using σi(m)−1 = m−1 for m ∈ M . Thus M−1R is strongly σ̄-IFP.
The converse can be obtained from that the class of strongly σ-IFP ring is

closed under subrings. �
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For n ≥ 2, denote the n by n full matrix ring over a ring R by Matn(R) and
the n by n upper triangular matrix ring over R by Un(R).

For a ring R and n ≥ 2, consider the rings

Dn(R) =









































a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a















| a, aij ∈ R



























and

Vn(R) = {m = (mij) ∈ Dn(R) | mst = m(s+1)(t+1)

for s = 1, . . . , n− 2 and t = 2, . . . , n− 1},

which are subrings of Matn(R). Note that Vn(R) ∼= R[x]/(xn), where (xn) is
an ideal of the polynomial ring R[x] over R generated by xn.

For a ring R with an endomorphism σ, the corresponding (aij) 7→ (σ(aij))
induces endomorphisms of Matn(R), Dn(R) and Vn(R), respectively. We de-
note each of them by σ̄.

Let A be any ring with an endomorphism σ. Then Matn(A) and Un(A)
(n ≥ 2) do not have IFP since the subring U2(A) is not Abelian. Moreover,
Dn(A) (n ≥ 4) does not have IFP by [17, Example 1.3]. Therefore Matn(A),
Un(A) for n ≥ 2 and Dn(A) for n ≥ 4 are not strongly σ̄-IFP by Proposition
2.4(1). We will freely use this fact without reference. On the other hand, Vn(R)
(n ≥ 2) over a σ-rigid ring R is strongly σ̄-reversible by [15, Theorem 3.1] and
so strongly σ̄-IFP.

But we have the following result.

Proposition 3.7. If R is a σ-rigid ring, then Dn(R) for n = 2, 3 is strongly

σ̄-IFP.

Proof. It is enough to show that D3(R) over a σ-rigid ring R is strongly σ̄-IFP
since D2(R) = V2(R). Note that D3(R)[x; σ̄] ∼= D3(R[x;σ]). Suppose that
R is σ-rigid. Let p(x) =

∑m

i=0 Aix
i, q(x) =

∑n

j=0 Bjx
j ∈ D3(R)[x; σ̄] with

Ai = (a
(i)
st ) and Bj = (b

(j)
uv ) ∈ D3(R). We can write p(x) = (pst(x)), q(x) =

(quv(x)) ∈ D3(R[x;σ]) with pst =
∑m

i=0 a
(i)
st x

i, quv =
∑n

j=0 b
(j)
uvxj ∈ R[x;σ].

From p(x)q(x) = 0, we have the following equalities:

(3) p11(x)q11(x) = 0;

(4) p11(x)q12(x) + p12(x)q11(x) = 0;

(5) p11(x)q13(x) + p12(x)q23(x) + p13(x)q11(x) = 0;

(6) p11(x)q23(x) + p23(x)q11(x) = 0.
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Note that R[x;σ] is reduced. Recall that ab = 0 implies aAb = 0 and ba = 0,
and that ab2 = 0 implies that ab = 0 for any reduced ring A and a, b ∈ A. We
will freely use these facts in the following procedure. Since R is strongly σ-IFP,

(7) p11(x)R[x;σ]q11(x) = 0

from Eq. (3). If we multiply Eq. (4) and Eq. (6) on the right-hand side by
q11(x) respectively, then we have p12(x)q

2
11(x) = 0 and p23(x)q

2
11(x) = 0, and

so p12(x)q11(x) = 0 and p23(x)q11(x) = 0 and moreover, p11(x)q12(x) = 0 and
p11(x)q23(x) = 0. Thus

(8)
p11(x)R[x;σ]q12(x) = 0, p12(x)R[x;σ]q11(x) = 0,

p11(x)R[x;σ]q23(x) = 0 and p23(x)R[x;σ]q11(x) = 0.

If we multiply Eq. (5) on the right-hand side by q11(x) and q23(x) in turn, then
we get p13(x)q11(x) = 0, p12(x)q23(x) = 0 and moreover p11(x)q13(x) = 0 by
the same method as above, respectively. Hence,
(9)
p11(x)R[x;σ]q13(x) = 0, p12(x)R[x;σ]q23(x) = 0 and p13(x)R[x;σ]q11(x) = 0.

Consequently, Eqs. (8,9,10) imply that D3(R) is strongly σ̄-IFP. �

The hypothesis “R is a σ-rigid ring” in Proposition 3.7 cannot be weakened
the condition “R is a strongly σ-IFP ring”. For example, consider the strongly
σ-IFP ring R which is not σ-rigid, as in Example 2.11(1). Then D2(R) is not σ-
IFP by [1, Example 2.9], and hence D2(R) is not strongly σ-IFP by Proposition
2.4(1). Observe that Proposition 3.7 extends the results of [17, Propositions
1.2 and 1.6].

For an ideal I and an endomorphism σ of a ring R, if I is a σ-ideal (i.e.,
σ(I) ⊆ I) of R then σ̄ : R/I → R/I defined by σ̄(a+ I) = σ(a) + I for a ∈ R
is an endomorphism of a factor ring R/I. The class of strongly σ-IFP rings is
not closed under homomorphic images. Indeed, if R is the ring of quaternions
with integer coefficients with a monomorphism σ, then R is a domain, and so
strongly σ-IFP; while for any odd prime integer q, we have R/qR ∼= Mat2(Zq)
by the argument in [6, Exercise 2A]. But Mat2(Zq) is not strongly σ̄-IFP as
mentioned earlier, and thus the factor ring R/qR is not strongly σ̄-IFP.

For a nonempty subset S of a ring R, we write rR(S) = {c ∈ R | Sc =
0} (resp., ℓR(S) = {c ∈ R | cS = 0}) which is called the right (resp., left)
annihilator of S in R. A ring R has IFP if and only if any one-sided annihilator
is an ideal of R by [26, Lemma 1.2].

Proposition 3.8. (1) Let R be a strongly σ-IFP ring. If I is the one-sided

annihilator of any nonempty subset in R and σ(I) ⊆ I, then R/I is strongly

σ̄-IFP.
(2) Let σ be an endomorphism and I an ideal of a ring R. For a σ-ideal I

of R such that R/I is strongly σ̄-IFP, if I is a σ-rigid ring without identity,

then R is strongly σ-IFP.
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Proof. (1) Assume that R is a strongly σ-IFP ring and let I = rR(S) for
φ 6= S ⊆ R. Then I is an ideal since R has IFP by Proposition 2.4(1). Let
p̄(x)q̄(x) = 0̄ with p̄(x) =

∑m

i=0 āix
i, q̄(x) =

∑n

j=0 b̄jx
j ∈ R̄[x; σ̄] where R̄ =

R/I and c̄ = c+ I for c ∈ R. Then Sp(x)q(x) = 0, and so Sp(x)(rxt)q(x) = 0
for any r ∈ R and t ≥ 0 by hypothesis, where p(x) =

∑m

i=0 aix
i, q(x) =

∑n

j=0 bjx
j ∈ R[x;σ]. Thus

S





m+n
∑

k=0





∑

i+j=k

aiσ
i(rσt(bj))



 xk+t



 = 0

and so
m+n
∑

k=0





∑

i+j=k

āiσ̄
i(r̄σ̄t(b̄j))



 xk+t = 0̄,

entailing that p̄(x)(r̄xt)q̄(x) = 0̄ for any r ∈ R and t ≥ 0. Therefore R/I is
strongly σ̄-IFP. The left annihilator case is similar.

(2) Assume thatR/I is strongly σ̄-IFP and I is a σ-rigid ring. Let p(x)q(x) =
0 for p(x), q(x) ∈ R[x;σ]. Then p(x)R[x;σ]q(x) ⊆ I[x;σ] since R/I is strongly
σ̄-IFP, and q(x)I[x;σ]p(x) = 0 since q(x)I[x;σ]p(x) ⊆ I[x;σ], (q(x)I[x;σ]p(x))2

= 0 and I[x;σ] is reduced. Thus, (p(x)R[x;σ]q(x)I[x;σ])2 = p(x)R[x;σ]q(x)
I[x;σ]p(x)R[x;σ]q(x)I = 0 and so p(x)R[x;σ]q(x)I[x;σ] = 0; hence

(p(x)R[x;σ]q(x))2 ⊆ p(x)R[x;σ]q(x)I[x;σ] = 0

since p(x)R[x;σ]q(x) ⊆ I[x;σ]. Then p(x)R[x;σ]q(x) = 0 since I[x;σ] is re-
duced. Therefore R is strongly σ-IFP. �

The condition “I is a σ-rigid ring without identity” in the Proposition 3.8(2)
cannot be dropped by the next example.

Example 3.9. Consider a ring R = U2(F ) over a division ring F and an
automorphism σ of R defined by σ (( a b

0 c )) =
(

a −b
0 c

)

. Then R is not clearly
Abelian, and so R is not strongly σ-IFP by Corollary 2.5(1). The σ-ideal
I = ( F F

0 0 ) of R is not σ-rigid as a ring without identity: Indeed, Aσ(A) = 0
but A 6= 0 for A = ( 0 1

0 0 ) ∈ I. Note that the factor ring R/I ∼= F is reduced
and σ̄ is an identity map on R/I. That is, R/I is σ̄-rigid and hence strongly
σ̄-IFP.
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