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REVERSIBILITY OVER UPPER NILRADICALS
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Abstract. The studies of reversible and NI rings have done important

roles in noncommutative ring theory. A ring R shall be called QRUR if
ab = 0 for a, b ∈ R implies that ba is contained in the upper nilradical

of R, which is a generalization of the NI ring property. In this article we

investigate the structure of QRUR rings and examine the QRUR property
of several kinds of ring extensions including matrix rings and polynomial

rings. We also show that if there exists a weakly semicommutative ring

but not QRUR, then Köthe’s conjecture does not hold.

1. Introduction

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. N∗(R), N∗(R), and N(R) denote the lower
nilradical (i.e., prime radical), the upper nilradical (i.e., sum of all nil ideals),
and the set of all nilpotent elements in R, respectively. Note N∗(R) ⊆ N∗(R) ⊆
N(R). The polynomial ring with an indeterminate x over a ring R is denoted
by R[x]. Let Cf(x) denote the set of all coefficients of given a polynomial f(x).
Denote the n by n (n ≥ 2) full (resp., upper triangular) matrix ring over R
by Matn(R) (resp., Un(R)). Use eij for the matrix with (i, j)-entry 1 and
elsewhere 0.

Following Cohn [7], a ring R (possibly without identity) is called reversible
if ab = 0 implies ba = 0 for a, b ∈ R. Anderson and Camillo [2], observing
the rings whose zero products commute, used the term ZC2 for what is called
reversible. Following Narbonne [21], a ring R (possibly without identity) is
called semicommutative if ab = 0 for a, b ∈ R implies aRb = 0. A ring (pos-
sibly without identity) is usually called reduced if it has no nonzero nilpotent
elements. One can prove through simple computation that reduced rings are
reversible and reversible rings are semicommutative. We will use these facts
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freely. A ring (possibly without identity) is called Abelian if every idempotent
is central. Semicommutative rings are easily shown to be Abelian.

Following Birkenmeier et al. [5], a ring R (possibly without identity) is called
2-primal if N∗(R) = N(R). Note that a ring R is reduced if and only if R is
both semiprime and 2-primal. Semicommutative rings are 2-primal through a
simple computation, but the converse need not hold as can be seen by U2(D)
over a 2-primal ring D, noting that U2(D) is 2-primal but non-Abelian.

Following [14], a ring R (possibly without identity) is called QRPR if ab = 0
for a, b ∈ R implies ba ∈ N∗(R). 2-primal rings are QRPR by [14, Lemma 1.1],
but the converse need not hold by [14, Example 1.5].

Following Marks [20], a ring R (possibly without identity) is called NI if
N∗(R) = N(R). Note that a ring R is NI if and only if N(R) forms an ideal
if and only if R/N∗(R) is reduced. 2-primal rings are clearly NI, but not
conversely by [5, Example 3.3], [12, Example 1.2], or [20, Example 2.2].

Lemma 1.1 ([14, Lemma 1.2]). For a ring R the following conditions are
equivalent:

(1) R is NI;
(2) a2 ∈ N∗(R) for a ∈ R implies a ∈ N∗(R);
(3) abc ∈ N∗(R) for a, b, c ∈ R implies acb ∈ N∗(R);
(4) ab ∈ N∗(R) for a, b ∈ R implies ba ∈ N∗(R);
(5) ab ∈ N∗(R) for a, b ∈ R implies aRb ⊆ N∗(R);
(6) R/N∗(R) is 2-primal;
(7) r1r2 · · · rn ∈ N∗(R) for ri ∈ R implies Rrσ(1)Rrσ(2)R · · ·Rrσ(n)R ⊆

N∗(R) for any permutation σ of the set {1, 2, . . . , n}, where n ≥ 2.

We start our study by the following that is induced from Lemma 1.1.

Definition 1.2. A ring R (possibly without identity) is called quasi-reversible-
over-upper-nilradical (simply, QRUR) if ab = 0 for a, b ∈ R implies ba ∈ N∗(R).

The following is an immediate consequence of the definition.

Lemma 1.3. For a ring R the following conditions are equivalent:
(1) R is QRUR;
(2) ab = 0 for a, b ∈ R implies baR ⊆ N∗(R);
(3) ab = 0 for a, b ∈ R implies Rba ⊆ N∗(R);
(4) ab = 0 for a, b ∈ R implies RbaR ⊆ N∗(R).

We will use Lemma 1.3 freely. NI rings are QRUR by Lemma 1.1 and QRPR
rings clearly are QRUR. But the converses need not hold by the following. For
a given ring R and k ≥ 1, we use Nk(R) = {a ∈ R | ak = 0}.

Example 1.4. (1) There exists a QRPR (hence QRUR) ring which is not
NI. We use the ring and argument in [10, Example 1]. Let F be a field and
A = F 〈x, y〉 be the free algebra generated by noncommuting indeterminates
x, y over F . Let R = A/(x2)2, where (x2) is the ideal of A generated by x2. We
identity x, y with their images in R. Note that N∗(R) = Rx2R = N2(R) and



REVERSIBILITY OVER UPPER NILRADICALS 449

N(R) = xRx+Rx2R+Fx. Moreover N∗(R) = N∗(R) by the computation in
[13, Example 1.2 (2)]. This yields N∗(R) ( N(R), and so R is not NI.

Now suppose that ab = 0 for a, b ∈ R. Then ba ∈ N2(R). This yields
ba ∈ N2(R) = N∗(R) = N∗(R) by the computation in [6, Example 2.2]. Thus
R is QRPR.

(2) There exists a QRUR ring that is not QRPR. We use the ring and
argument in [12, Example 1.2]. Let S be a 2-primal ring, n be a positive integer
and Rn be the 2n by 2n upper triangular matrix ring over S, i.e., Rn = U2n(S).
Each Rn is a 2-primal (hence NI) ring by [5, Proposition 2.5]. Define a map
σ : Rn → Rn+1 by A 7→ (A 0

0 A ), then Rn can be considered as a subring of
Rn+1 via σ (i.e., A = σ(A) for A ∈ Rn). Next set R = ∪∞i=1Rn. Then R is an
NI (but not 2-primal) ring with N∗(R) = 0, by the argument in [12, Example
1.2]. Furthermore R is QRUR by Lemma 1.1. Now let a = e23 and b = e12 in
R2 ⊂ R. Then ab = 0, but ba = e13 /∈ N∗(R) since N∗(R) = 0. So R is not
QRPR.

Following Liang et al. [19], a ring R is called weakly semicommutative if
ab = 0 for a, b ∈ R implies aRb ⊆ N(R). This notion is a proper general-
ization of semicommutative rings. Liang et al. showed that U2(R) is weakly
semicommutative over a semicommutative ring R.

Proposition 1.5. (1) QRUR rings are weakly semicommutative.
(2) The class of weakly semicommutative rings contains both NI rings and

QRPR rings.

Proof. We apply the proof of [14, Proposition 1.6]. Let R be a QRUR ring
and suppose that ab = 0 for a, b ∈ R. Then (aRbaRba)(baRb) = 0. Since R is
QRUR, we get (barb)(arbarba) ∈ N∗(R) and this yields

(arb)5 = ar[(barb)(arbarba)]rb ∈ N∗(R)

for all r ∈ R. Thus arb ∈ N(R), and so R is weakly semicommutative.
(2) is immediately obtained from (1). �

Köthe [17] conjectured in 1930 that if a ring has no nonzero nil ideals, then
it has no nonzero nil one-sided ideals. There are many assertions equivalent
to this conjecture. For example, Köthe conjecture holds if and only if the sum
of two nil right ideals is nil if and only if the upper nilradical contains all nil
right ideals [18]. We do not know any example of a weakly semicommutative
ring that is not QRUR. The following shows that the converse of Proposition
1.5(1) holds for rings satisfying Köthe’s conjecture.

Proposition 1.6. (1) Let R be a ring which satisfies Köthe’s conjecture. If R
is weakly semicommutative, then R is QRUR.

(2) Suppose that there exists a weakly semicommutative ring but not QRUR.
Then Köthe’s conjecture does not hold.
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Proof. (1) Let R be a weakly semicommutative ring that satisfies Köthe’s
conjecture. Let ab = 0 for a, b ∈ R. Since R is weakly semicommutative,
aRb ⊆ N(R). It then follows that Rba and baR are contained in N(R). Since
R satisfies Köthe’s conjecture, Rba and baR are contained in N∗(R). This
implies that R is QRUR.

(2) is an immediate consequence of (1). �

2. Properties and examples

In this section we investigate properties of QRUR rings and extend the class
of QRUR rings by applying them. The following provides us a method by which
we can examine the QRUR property of given rings. Let R be a ring. Following
[23, Definition 2.6.5], an ideal P of R is called strongly prime if P is prime and
R/P has no nonzero nil ideals. Maximal ideals are clearly strongly prime, but
there exist many strongly prime ideals which are not maximal (e.g., zero ideals
of non-simple domains). An ideal P of R is called minimal strongly prime if P
is minimal in the space of strongly prime ideals in R. N∗(R) =

⋂
{P |P is a

strongly prime ideal of R} =
⋂
{P |P is a minimal strongly prime ideal of R}

by help of [23, Proposition 2.6.7].

Theorem 2.1. Let R be a ring and I be a proper ideal of R such that R/I is
QRUR. If I is NI as a ring without identity, then R is QRUR.

Proof. We apply the proof of [14, Theorem 1.8]. Let ab = 0 for a, b ∈ R. Then
bIa is a nil subset of I, and b̄ā ∈ N∗(R/I) since R/I is QRUR.

Suppose that I is NI as a ring without identity. Then I/N∗(I) is a reduced
ring, entailing that N(I) = N∗(I) is a nil ideal of R by help of Andrunakievic
[8, Lemma 61] (i.e., (RN∗(I)R)3 ⊆ IRN∗(I)RI = IN∗(I)I ⊆ N∗(I)). This
yields bIa ⊆ N(I) = N∗(I) ⊆ N∗(R), so

(baI)(baI) · · · (baI) = b(aIbaIb · · · aIb)aI ⊆ bIaI ⊆ N∗(I).

Since I/N∗(I) is a reduced ring, we get baRI = baI ⊆ N∗(I) ⊆ N∗(R). Then
baI ⊆ P for any minimal strongly prime ideal P of R. But P is prime, so ba ∈ P
or I ⊆ P . Here assume ba /∈ P . Then I ⊆ P , and so b̄ā ∈ N∗(R/I) ⊆ P/I.
This yields ba ∈ P , a contradiction. Consequently ba ∈ P , and thus ba ∈ N∗(R)
because P runs over all minimal strongly prime ideals of R. This concludes
that R is QRUR. �

As an application of Theorem 2.1, consider E = Un(R) for n ≥ 2 over an NI
ring R. Then

N(E) = {(aij) ∈ Un(R) | aii ∈ N∗(R) for all i} = N∗(E),

entailing E
N∗(E)

∼= R
N∗(R) ⊕ · · · ⊕

R
N∗(R)︸ ︷︷ ︸

n-times

. Since R
N∗(R) is a reduced ring, E

N∗(E)

is QRUR by Proposition 2.2 to follow. But N∗(E) is NI, so E is QRUR by
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Theorem 2.1, letting I = N∗(E). Theorem 2.1 is also applicable to the case of
setting I = {(aij) ∈ Un(R) | aii = 0 for all i}, noting that R

I
∼= R⊕ · · · ⊕R︸ ︷︷ ︸

n-times

.∏
(resp., ⊕) denotes the direct product (resp., direct sum) of rings.

Proposition 2.2. The class of QRUR rings is closed under subrings and direct
sums.

Proof. We apply the proof of [14, Proposition 1.9]. Let R be a QRUR ring
and S be a subring of R. Take ab = 0, for a, b ∈ S. Then ba ∈ N∗(R). Since
N∗(R) ∩ S ⊆ N∗(S), we have ba ∈ N∗(S).

Suppose that Ri is a QRUR ring for each i in a nonempty index set I, and
let D be the direct sum of Ri’s. Let a = (ai), b = (bi) ∈ D with ab = 0. Then
aibi = 0 for each i ∈ I and so biai ∈ N∗(Ri). Notice that N∗(⊕i∈IRi) =
⊕i∈IN∗(Ri). So we have ba ∈ N∗(⊕i∈IRi), entailing D is QRUR. �

As in the proof of Proposition 2.2, N∗(R) ∩ S ⊆ N∗(S) holds for any ring
R. But the converse inclusion need not hold as can be seen by the ring R in
Example 1.4(2). In fact, consider the subring R1 = U2(A) over a NI ring A.

Then N∗(R1) =
(
N∗(A) A

0 N∗(A)

)
6= 0 and N∗(R) = 0.

For a given ring R we usually write Dn(R) = {(aij) ∈ Un(R) | a11 = · · · =
ann}, UNn(R) = {(aij) ∈ Dn(R) | a11 = · · · = ann = 0} and Vn(R) = {(mij) ∈
Dn(R) | mst = m(s+1)(t+1) for s = 1, . . . , n−2 and t = 2, . . . , n−1}. It is easily
checked that Vn(R) ∼= R[x]/xnR[x].

Corollary 2.3. For a given ring R and n ≥ 2, the following conditions are
equivalent:

(1) R is QRUR;
(2) Un(R) is QRUR;
(3) Dn(R) is QRUR;
(4) Vn(R) is QRUR;
(5) R[x]/xnR[x] is QRUR.

Proof. (1) ⇒ (2). Let R be QRUR and consider Un(R). Let I = UNn(R).
Then I is a nil ideal of Un(R), hence I is NI as a ring without identity. Note
Un(R)/I is isomorphic to

∏n
i=1Ri, where Ri = R for all i. Since R is QRUR,∏n

i=1Ri is QRUR by Proposition 2.2, noting
∏n
i=1Ri = ⊕ni=1Ri. So Un(R)/I

is also QRUR. Thus Un(R) is QRUR by Theorem 2.1.
(Another proof) We apply the proof of [14, Proposition 1.10]. Let R be a

QRUR ring, and suppose AB = 0 for A = (aij), B = (bij) ∈ Un(R). Then
aiibii = 0 for all i ∈ {1, . . . , n}. Since R is QRUR, we have biiaii ∈ N∗(R).
Notice that

N∗(Un(R)) =


N∗(R) R · · · R

0 N∗(R) · · · R
...

...
. . .

...
0 0 · · · N∗(R)

 .
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Thus BA ∈ N∗(Un(R)).
(2) ⇒ (3), (3) ⇒ (4) and (4) ⇒ (1) are proved by Proposition 2.2. (4) ⇔

(5) is obvious because Vn(R) and R[x]/xnR[x] are isomorphic. �

From [11], given a ring R and a R-bimodule M , the trivial extension of R by
M is the ring T (R,M) with the usual addition and the following multiplication:
(r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to the ring of all
matrices ( r m0 r ), where r ∈ R and m ∈M , and the usual matrix operations are
used. The proof of the following is similar to one of Corollary 2.3.

Corollary 2.4. Let R and M be a R-bimodule. Then R is QRUR if and only
if T (R,M) is QRUR.

One may suspect that if a ring R is QRUR, then Matn(R) is QRUR (or
weakly semicommutative) for n ≥ 2. But Matn(R) cannot be weakly semicom-
mutative (hence cannot be QRUR by Proposition 1.5(1)) by the argument in
[14, Example 1.12].

Let A be an algebra (with or without identity) over a commutative ring
S. Due to Dorroh [9], the Dorroh extension of A by S is the Abelian group
A× S with multiplication given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2)
for ri ∈ A and si ∈ S. Use A×dor S to denote this extension.

Corollary 2.5. Let A be an NI algebra (with or without identity) over a com-
mutative ring S. Then A×dor S is QRUR.

Proof. Let R = A ×dor S and I = A ×dor 0. Then R/I is isomorphic to S,
so commutative (hence QRUR). Moreover I is NI by hypothesis. Thus R is
QRUR by Theorem 2.1. �

Following Rege and Chhawchharia [22, Definition 1.1], a ring R is called
Armendariz if whenever any polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) =
0, we have ab = 0 for all a ∈ Cf(x) and b ∈ Cg(x). Every reduced ring is
Armendariz by [4, Lemma 1]. Armendariz rings are Abelian by the proof of
[1, Theorem 6] (or [16, Lemma 7]).

The concepts of Armendariz and QRUR are independent of each other by
the following.

Example 2.6. (1) We use the construction and argument in [3, Theorem 4.7].
Let F be a field and A = F 〈a, b〉 be the free algebra generated by noncommuting
indeterminates a, b over F . Let R = A/(b2), where (b2) is the ideal of A. Then
R is Armendariz by [3, Theorem 4.7]. We identify a, b with their images in R.
R is not QRUR by Lemma 1.3 because abb = 0 but baba /∈ N(R).

(2) Let R be a QRUR ring. Then U2(R) is a QRUR ring by Proposition 2.3.
But this ring is non-Abelian, and so U2(R) is not Armendariz since Armendariz
rings are Abelian.

The QRUR property can go up to polynomial rings when given rings are
Armendariz as we see in the following that is similar to [14, Proposition 1.15].
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Proposition 2.7. Let R be an Armendariz ring. If R is QRUR, then R[x] is
QRUR.

Proof. Let R be a QRUR ring. Assume f =
∑m
i=0 aix

i, g =
∑n
j=0 bjx

j ∈ R[x]
satisfy fg = 0. Then since R is Armendariz, aibj = 0 for all i and j. Since R
is QRUR, we have bjai ∈ N∗(R) for all i, j.

Since R is Armendariz, N∗(R) = N∗(R) by [15, Lemma 2.3 (5)] and R[x] is
also Armendariz by [1, Theorem 2]. Thus N∗(R)[x] = N∗(R)[x] = N∗(R[x]) =
N∗(R[x]) by [18, Theorem 10.19]. Then we obtain gf ∈ N∗(R[x]) from the
fact that bjai ∈ N∗(R) for all i, j. This implies that R[x] is QRUR. �
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