References
- D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
- D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
- R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
- E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
- G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, in Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
- W. Chen, On nil-semicommutative rings, Thai J. Math. 9 (2011), no. 1, 39-47.
- P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
- N. Divinsky, Rings and Radicals, Mathematical Expositions No. 14, University of Toronto Press, Toronto, ON, 1965.
- J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
- Y. Hirano, D. van Huynh, and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. (Basel) 66 (1996), no. 5, 360-365. https://doi.org/10.1007/BF01781553
- C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
- S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
- S. U. Hwang, Y. C. Jeon, and K. S. Park, On NCI rings, Bull. Korean Math. Soc. 44 (2007), no. 2, 215-223. https://doi.org/10.4134/BKMS.2007.44.2.215
- D. W. Jung, Y. Lee, and H. J. Sung, Reversibility over prime radicals, Korean J. Math. 22 (2014), 279-288. http://doi.org/10.11568/kjm.2014.22.2.279
- N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. https://doi.org/10.1080/00927870600549782
- N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
- G. Kothe, Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollstandig reduzibel ist, Math. Z. 32 (1930), no. 1, 161-186. https://doi.org/10.1007/BF01194626
- T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4684-0406-7
- L. Liang, L.Wang, and Z. Liu, On a generalization of semicommutative rings, Taiwanese J. Math. 11 (2007), no. 5, 1359-1368. https://doi.org/10.11650/twjm/1500404869
- G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
- L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels; anneaux dont les ideaux principaux sont idempotents, in Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris.
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. http://projecteuclid.org/euclid.pja/1195510144 https://doi.org/10.3792/pjaa.73.14
- L. H. Rowen, Ring Theory, student edition, Academic Press, Inc., Boston, MA, 1991.