DOI QR코드

DOI QR Code

REVERSIBILITY OVER UPPER NILRADICALS

  • Jung, Da Woon (Finance Fishery Manufacture Industrial Mathematics Center on Big Data Pusan National University) ;
  • Lee, Chang Ik (Department of Mathematics Pusan National University) ;
  • Piao, Zhelin (Department of Mathematics Yanbian University) ;
  • Ryu, Sung Ju (Department of Mathematics Pusan National University) ;
  • Sung, Hyo Jin (Department of Mathematics Pusan National University) ;
  • Yun, Sang Jo (Department of Mathematics Dong-A University)
  • Received : 2019.03.22
  • Accepted : 2019.05.21
  • Published : 2020.04.30

Abstract

The studies of reversible and NI rings have done important roles in noncommutative ring theory. A ring R shall be called QRUR if ab = 0 for a, b ∈ R implies that ba is contained in the upper nilradical of R, which is a generalization of the NI ring property. In this article we investigate the structure of QRUR rings and examine the QRUR property of several kinds of ring extensions including matrix rings and polynomial rings. We also show that if there exists a weakly semicommutative ring but not QRUR, then Köthe's conjecture does not hold.

Keywords

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  2. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
  3. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  4. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  5. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, in Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
  6. W. Chen, On nil-semicommutative rings, Thai J. Math. 9 (2011), no. 1, 39-47.
  7. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  8. N. Divinsky, Rings and Radicals, Mathematical Expositions No. 14, University of Toronto Press, Toronto, ON, 1965.
  9. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
  10. Y. Hirano, D. van Huynh, and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. (Basel) 66 (1996), no. 5, 360-365. https://doi.org/10.1007/BF01781553
  11. C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
  12. S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
  13. S. U. Hwang, Y. C. Jeon, and K. S. Park, On NCI rings, Bull. Korean Math. Soc. 44 (2007), no. 2, 215-223. https://doi.org/10.4134/BKMS.2007.44.2.215
  14. D. W. Jung, Y. Lee, and H. J. Sung, Reversibility over prime radicals, Korean J. Math. 22 (2014), 279-288. http://doi.org/10.11568/kjm.2014.22.2.279
  15. N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. https://doi.org/10.1080/00927870600549782
  16. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
  17. G. Kothe, Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollstandig reduzibel ist, Math. Z. 32 (1930), no. 1, 161-186. https://doi.org/10.1007/BF01194626
  18. T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4684-0406-7
  19. L. Liang, L.Wang, and Z. Liu, On a generalization of semicommutative rings, Taiwanese J. Math. 11 (2007), no. 5, 1359-1368. https://doi.org/10.11650/twjm/1500404869
  20. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
  21. L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels; anneaux dont les ideaux principaux sont idempotents, in Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris.
  22. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. http://projecteuclid.org/euclid.pja/1195510144 https://doi.org/10.3792/pjaa.73.14
  23. L. H. Rowen, Ring Theory, student edition, Academic Press, Inc., Boston, MA, 1991.