References
- M. Baser, A. Harmanci, and T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285-297. https://doi.org/10.4134/BKMS.2008.45.2.285
- M. Baser, T. K. Kwak, and Y. Lee, The McCoy condition on skew polynomial rings, Comm. Algebra 37 (2009), no. 11, 4026-4037. https://doi.org/10.1080/00927870802545661
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
- J. L. Dorroh, Concerning adjunctins to algebras, Bull. Amer. Math. Soc. 38 (1932), 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
- K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
- Y. Hirano, On the uniqueness of rings of coefficients in skew polynomial rings, Publ. Math. Debrecen 54 (1999), no. 3-4, 489-495.
- C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra. 151 (2000), no. 3, 215-226. https://doi.org/10.1016/S0022-4049(99)00020-1
- C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122. https://doi.org/10.1081/AGB-120016752
- C. Y. Hong, N. K. Kim, and Y. Lee, Skew polynomial rings over semiprime rings, J. Korean Math. Soc. 47 (2010), no. 5, 879-897. https://doi.org/10.4134/JKMS.2010.47.5.879
- C. Y. Hong, N. K. Kim, and Y. Lee, Extensions of McCoy's theorem, Glasgow Math. J. 52 (2010), no. 1, 155-159. https://doi.org/10.1017/S0017089509990243
- C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253-266. https://doi.org/10.1142/S100538670600023X
- C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
- D. A. Jordan, Bijective extensions of injective rings endomorphism, J. London Math. Soc. 25 (1982), no. 3, 435-448.
- F. Kaynarca, T. K. Kwak, and Y. Lee, Reversibility of skew polynomial rings (submitted).
- N. K. Kim, T. K. Kwak, and Y. Lee, Insertion-of-factors-property skewed by ring en- domorphisms, Taiwanese J. Math. 18 (2014), no. 3, 849-869. https://doi.org/10.11650/tjm.18.2014.3325
- N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
- J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
- T. K. Kwak, Y. Lee, and S. J. Yun, The Armendariz property on ideals, J. Algebra 354 (2012), 121-135. https://doi.org/10.1016/j.jalgebra.2011.12.019
- J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
- N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
- L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.
- A. R. Nasr-Isfahani and A. Moussavi, Skew Laurent polynomial extensions of Baer and p.p.-rings, Bull. Korean Math. Soc. 46 (2009), no. 6, 1041-1050. https://doi.org/10.4134/BKMS.2009.46.6.1041
- P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9