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ON WEAKLY LEFT QUASI-COMMUTATIVE RINGS

DonGg Hwa KiM, ZHELIN P1AO, AND SANG JO YUN

ABSTRACT. We in this note consider a generalized ring theoretic property
of quasi-commutative rings in relation with powers. We will use the ter-
minology of weakly left quasi-commutative for the class of rings satisfying
such property. The properties and examples are basically investigated in
the procedure of studying idempotents and nilpotent elements.

1. Introduction

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. We use C(R) to denote the center of R, i.e.,
the set of all central elements in R. The n by n full (resp., upper triangular)
matrix ring over R is written by Mat, (R) (resp., Un(R)). D,(R) denotes the
subring {(a;;) € Up(R) | 11 = -+ = ann} of Uy(R). Use E;; for the matrix
with (4, j)-entry 1 and zeros elsewhere. Let J(R), No(R), N.(R), N*(R), and
N(R) denote the Jacobson radical, the Wedderburn radical, the prime radical,
the upper nilradical (i.e., sum of all nil ideals), and the set of all nilpotent
elements in a given ring R (possibly without identity), respectively. It is well-
known that N*(R) C J(R) and No(R) C N.(R) C N*(R) C N(R). The
polynomial ring with an indeterminate x over R is denoted by R[x], and for
any polynomial f(xz) in R[z] C}(,) denotes the set of all coefficients of f(x). Z,
denotes the ring of integers modulo n. |S| denotes the cardinality of a given
set S.

A ring (possibly without identity) is usually called reduced if it has no
nonzero nilpotent elements. A ring is usually called Abelian if every idem-
potent is central.

Following Jung et al. [8], a ring R is said to be quasi-commutative if ab €
C(R) for all a € Cy(,) and b € Cy(,) whenever two polynomials f(z) and g(x)
over R satisfy f(z)g(x) € C(R)[z]. In this note we consider a generalization of
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quasi-commutative rings. In the procedure, the following kind of matrix ring
does a basic role. Next consider a generalization of quasi-commutative rings.

Definition 1.1. A ring R (possibly without identity) shall be said to be weakly
left quasi-commutative provided that there exists positive integers m = m(a),
depending on a, such that a™b € C(R) for each pair (a,b) € Cy(y) X Cya)
whenever two polynomials f(z),g(z) € R[z] satisfy f(x)g(x) € C(R)[x]. The
weakly right quasi-commutative ring is defined similarly. A ring is called weakly
quasi-commutative if it is both weakly left and weakly right quasi-commutative.

Every quasi-commutative ring is clearly weakly quasi-commutative. C(R[z])
= C(R)[x] is easily shown, so we will use this fact freely.

Lemma 1.2. Let R be a weakly left quasi-commutative ring. Then we have
the following.

(1) Let a € R. If a™ € C(R) for some n > 1, then a € C(R).

(2) N(R) € C(R).

(3) N(R) = N.(R) = N*(R) = No(R).

(4) Fvery weakly left or right quasi-commutative ring is Abelian.

Proof. (1) The proof is almost same as one of [8, Lemma 1.5(1)]. But we write
it here for the completeness. Let a € R and suppose that ™ € C(R) for some
n > 1. Then (1 —az)(1 + ax + a?2? +---+a" 12" 1) =1 —a"z™ € C(R)[z].
Since R is weakly left quasi-commutative, we have a = la = 1%*a € C(R) for
some k > 1.

The proofs of (2) and (3) are equal to those of [8, Lemma 1.5(2, 3)].

(4) We apply the proof of [8, Proposition 1.8(1)]. Let R be a weakly left
quasi-commutative ring. Assume on the contrary that there exist e? = e,r € R
such that er(1 —e) # 0. Let a = er(l —e). Consider f(z) = e + az and
glz) = (1 —e) —ax in R[z]. Then f(x)g(z) = 0 € C(R)[z]. Since R is
weakly left quasi-commutative, a = ea = eFa € C(R) for some k > 1, and so
0 # a = ea = ae = 0. This induces a contradiction. The proof of right case is
similar, by the equality a = a(1 —e) = a(1 —e)! € C(R) for some [ > 1. O

By Lemma 1.2, we obtain [8, Lemma 1.5(1, 2, 3)] as corollaries.

Note. (1) Let R be a nil ring (possibly noncommutative) and a,b € R. Then
a™ = 0 and a™b = 0 for some n > 1, so R is weakly left quasi-commutative.
Similarly R is weakly right quasi-commutative. When R is a noncommutative
ring, Lemma 1.2(3) is not valid here. Note that the proof of the results in
Lemma 1.2 is done for the case of R having the identity.

(2) Let A be any ring and Ry = D, (A) for n > 5. Next set R = {(a;;) €
Ry | a11 = -+ = apn = 0} be the nil subring of Ry. Then R is weakly quasi-
commutative by (1). However R is not quasi-commutative as follows. Let

f(.%') = Fo3 + Foyx and g(m) = Ey5 — Fasx
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in R[z]. Then f(z)g(x) =0 € C(R)[z]. But Ex3FE35 = Ea5 ¢ C(R) because
Eos B2 =0 # Ei5 = E12Fas.
The following is an extension of weakly left quasi-commutative rings.

Proposition 1.3. (1) Let R be a weakly left quasi-commutative ring. Then
J(R[z])= No(R[z])= N.(R[z])= N*(R[z]) = No(R)[z]= N(R)[z]= N(Rl[z]).

(2) Let R be a weakly left quasi-commutative ring. Then Rlx]/J(R[z]) is a
reduced ring.

(3) Let R be a weakly left quasi-commutative ring. Then N(R[z]) is a com-
mutative ring without identity.

Proof. (1) The proof is much the same as [8, Proposition 1.6], by help of Lemma
1.2(3).

(2) is an immediate consequence of (1).

(3) is obtained by (1) and Lemma 1.2(2). O

By Proposition 1.3, we can obtain [8, Proposition 1.6] as a corollary.

Following [7], a ring is called locally finite if every finite subset generates
a finite multiplicative semigroup. It is obvious that the class of locally finite
rings contains finite rings and algebraic closures of finite fields. It is shown by
[6, Theorem 2.2(1)] that a ring is locally finite if every finite subset generates
a finite subring. In what follows, we extend [8, Corollary 1.10] to weakly left
quasi-commutative rings.

Proposition 1.4. Let R be a locally finite ring. Then the following conditions
are equivalent:

(1) R is weakly left quasi-commutative;

(2) R is weakly right quasi-commutative;

(3) R is quasi-commutative;

(4) R is commutative.

Proof. (4) = (3), (3) = (2), and (3) = (1) are obvious.

(1) = (4) is shown by applying the proof of [8, Corollary 1.10]. Let R be
quasi-commutative and a € R. Since R is locally finite, a* is an idempotent for
some k > 1 by the proof of [7, Propostion 16]. But a* is central for some k > 1
by Lemma 1.2. Consider f(z) =1 —az and g(z) =1 +azx+---+a* 12k L in
R[z]. Then f(x)g(z) = 1 — a¥z* € C(R)[z]. So a € C(R) because R is weakly
left quasi-commutative. Thus R is commutative.

The proof of (2) = (4) is similar to the preceding one. O

Thus finite noncommutative rings cannot be weakly left quasi-commutative
by Proposition 1.4.

Considering various situations above, one may conjecture that a ring R
may be weakly left quasi-commutative when both R/I and I are weakly left
quasi-commutative, where I is a proper ideal of R and is weakly left quasi-
commutative as a ring without identity. However the following erases the pos-
sibility.
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Example 1.5. Let K be a commutative ring, and R = D,,(K) for n > 3. Then
R is not weakly left quasi-commutative by the argument after Proposition 2.1
to follow, or by Lemma 1.2(2) because N (R) is not contained in C'(R). Consider
the ideal I = {(a;;) € R|a11 =+ = anyn = 0} of R. Then [ is a nil ring, and
so it is weakly quasi-commutative by Note after Lemma 1.2. Moreover R/I is
isomorphic to K, so it is quasi-commutative.

2. Examples and counterexamples

In this section we are concerned with examples and counterexamples which
are helpful to elaborate the structure of weakly left quasi-commutative rings.

Proposition 2.1. For a ring R, the following conditions are all equivalent:

(1) R is a commutative ring,

(2) D2(R) is a commutative ring;

(3) D2(R) is a quasi-commutative ring;

(4) D2(R) is a weakly left quasi-commutative ring;

(5) D2(R) is a weakly right quasi-commutative ring.

= (2), (2) = (3), (3) = (4), and (3) = (5) are obvious.

(4) = (1): The proof is done by Lemma 1.2(2) and the proof of [8, Propo-
sition 1.7]. But we write here another proof. Let Da(R) be a weakly left
quasi-commutative ring, and assume on the contrary that R is not commu-
tative. Say that ab # ba for some a,b € R. Consider f(z) = 1+ (J8&)z
and g(z) = 1+ (J&)z in Do(R)[z]. Then f(z)g(z) = 1 € C(R)[z]. But
1%(3¢)=(8¢) ¢ C(D2(R)) for all k > 1 because

0 a) (b 0y _ (0 ab ” 0 bay (b 0\ /0 a
0 0/\0 b/ \O0O O 0 0) \0o b/\0 0/
The proof of (5) = (1) is similar to the preceding one. O

Over any ring A, D,,(A) cannot be weakly left quasi-commutative when n >
3 because D,,(A) contains non-central nilpotent matrices E;; for ¢ = 1,2,...
and j =i+ 1. Note EijEj(jJrl) = Ei(jJrl) #0= Ej(j+1)Eij.

Due to Bell [2], a ring R is said to be IFP if ab = 0 implies aRb = 0 for
a,b € R. Reduced rings are easily shown to be IFP. It is also easily checked that
IFP rings are Abelian. So, considering Lemma 1.2(4), one may ask whether
IFP rings are weakly left quasi-commutative. However the following argument
answers negatively. Let R be the Hamilton quaternions H over the real number
field R. Then R is clearly IFP. But it is not weakly left quasi-commutative.
For, (1 —ix)(1 +ix) =1+ 2% € C(H)[z] and 1%i = 15 =i ¢ C(H) = R for all
k>1.

In what follows, we see an Abelian ring which is not weakly left quasi-
commutative, showing that the converse of Lemma 1.2(4) need not hold.

Example 2.2. We use the ring in [7, Example 2]. Let
A= ZQ(GO, ay, az, b07 b17 b27 C)
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be the free algebra with noncommuting indeterminates aq, a1, as, bg, b1, b2, ¢
over Zs, and B be the set of polynomials of zero constant term in A.

Let I be the ideal of A generated by agrbg,agbs + a1bg,apbs + a1by +
asbg, a1bs 4+ asby, asrbs, (ao +a1+ ag)T(bo +b1+ bg), and ryrorsry, where r € A
and r1,79,73,74 € B. Set R = A/I here. Then R is an IFP ring by [7, Example
2]. We identify ag, a1, as, by, b1, b2, ¢ with their images in R for simplicity. Note
B*=0.

However R is not weakly left quasi-commutative by Lemma 1.2(4) because
there exists a nilpotent element ag which is not central (note agby # bpap). In
fact, letting f(z) = 1+ adx € R[z], we have

fx)? = (1 +adz)(1 +adz) =1+ 2aiz + agz® =1 € C(R)[2],
but 1%a2 = a3 ¢ C(R) for all k > 1 (note a3by # boa?).

By help of Example 2.2, one can say that IFP rings need not be quasi-
commutative.

Let R be a ring. Recall that an element u in R is right reqular if ur = 0
implies » = 0 for » € R. The left reqular can be defined similarly. An element
is regular if it is both left and right regular (i.e., not a zero divisor).

Proposition 2.3. Let R be a ring and M be a multiplicatively closed sub-
set of R consisting of central reqular elements. Then R is weakly left quasi-
commutative if and only if so is M~'R.

Proof. We apply the proof of [8, Proposition 2.3]. Write E = M ~'R and note
that C(E) = M~1C(R) by the argument in the proof of [8, Proposition 2.3].

Suppose that R is weakly left quasi-commutative. Let F(z) = Y. a;a
and G(z) = Y7, B2’ be in Elz] such that F(z)G(z) € C(E)[z], where
a; = uta;, B; = v7'b; with a;,b; € R for all 4,5 and regular u,v € R.
But F(2)G(z) = uag + a1z + -+ + ama™)v " (bg + b1 + - + bpa™) =
(uv)~Hap + a1z + - + ama™) (b + bz + - - + bya™).

Here let f(z) = ap + a1z + -+ + amz™ and g(x) = bg + bix + -+ + bpa™.
Then f(x) and g(x) are in R[z]. Moreover f(x)g(z) € C(R)[z] since

F(2)G(z) € C(E)[z] and C(E) = M~ 'C(R).

Since R is weakly left quasi-commutative, there exists k; = k;(a;), depending
on a;, such that a¥'b; € C(R) for every tuple (i, ). This entails

af’ﬂj = u_klak v_lbj = (u_kiv_l)afibj I= M_lc(R) =C(E).

Thus E is weakly left quasi-commutative.

Suppose that E is weakly left quasi-commutative. Let f(x)g(z) € C(R)[z]
for f(x),g(x) € Rlz]. Then f(x)g(z) € (M~'C(R))z] = C(E)[x]. Since E
is weakly left quasi-commutative, a¥b € C(F) for some k > 1 for every tuple
(a,b) € C(z) X Cy(z)- Thus a¥b € C(R) since C(R) = RN C(E), and so R is
weakly left quasi-commutative. O
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Let R be a ring. Recall that the ring of Laurent polynomials, in an indeter-
minate = over R, consists of all formal sums Y ., a;z’ with obvious addition
and multiplication, where a; € R and k, n are (possibly negative) integers with
k < n. We denote this ring by R[x;z~}].

Corollary 2.4. Let R be a ring. Rx] is weakly left quasi-commutative if and
only if so is R[z;z~1].

Proof. The proof is an immediate consequence of Proposition 2.3, noting that
Rlz;x~ '] = M~ 'R[x] if M = {1,2,2%,...}. O

We provide a weakly quasi-commutative ring which is not quasi-commutative
in Note after Lemma 1.2. But this is the case of without identity. So we end
this note by asking whether there exist weakly left quasi-commutative rings
but not quasi-commutative when given rings have the identity.
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