• Title/Summary/Keyword: Matrix Ring

Search Result 236, Processing Time 0.025 seconds

On Axis-commutativity of Rings

  • Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.461-472
    • /
    • 2021
  • We study a new ring property called axis-commutativity. Axis-commutative rings are seated between commutative rings and duo rings and are a generalization of division rings. We investigate the basic structure and several extensions of axis-commutative rings.

AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 × 2 MATRICES

  • Ma, Xiaobin;Wang, Dengyin;Zhou, Jinming
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.519-532
    • /
    • 2016
  • The zero-divisor graph of a noncommutative ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are nonzero zero-divisors of R, and there is a directed edge from a vertex x to a distinct vertex y if and only if xy = 0. Let $R=M_2(F_q)$ be the $2{\times}2$ matrix ring over a finite field $F_q$. In this article, we investigate the automorphism group of ${\Gamma}(R)$.

f-CLEAN RINGS AND RINGS HAVING MANY FULL ELEMENTS

  • Li, Bingjun;Feng, Lianggui
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.247-261
    • /
    • 2010
  • An associative ring R with identity is called a clean ring if every element of R is the sum of a unit and an idempotent. In this paper, we introduce the concept of f-clean rings. We study various properties of f-clean rings. Let C = $\(\array{A\;V\\W\;B}\)$ be a Morita Context ring. We determine conditions under which the ring C is f-clean. Moreover, we introduce the concept of rings having many full elements. We investigate characterizations of this kind of rings and show that rings having many full elements are closed under matrix rings and Morita Context rings.

Extensions of Strongly α-semicommutative Rings

  • Ayoub, Elshokry;Ali, Eltiyeb;Liu, ZhongKui
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.203-219
    • /
    • 2018
  • This paper is devoted to the study of strongly ${\alpha}-semicommutative$ rings, a generalization of strongly semicommutative and ${\alpha}-rigid$ rings. Although the n-by-n upper triangular matrix ring over any ring with identity is not strongly ${\bar{\alpha}}-semicommutative$ for $n{\geq}2$, we show that a special subring of the upper triangular matrix ring over a reduced ring is strongly ${\bar{\alpha}}-semicommutative$ under some additional conditions. Moreover, it is shown that if R is strongly ${\alpha}-semicommutative$ with ${\alpha}(1)=1$ and S is a domain, then the Dorroh extension D of R by S is strongly ${\bar{\alpha}}-semicommutative$.

Ship Frame Ring Analysis by a Matrix Method (매트릭스법(法)에 의한 선체근골환(船體筋骨環) 해석(解析))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 1973
  • A simple matrix method to analyze the ship's transverse frame ring is proposed. In this approach, the frame ring is treated as a plane frame of uniform slender members. The loadings on the frame consist of buoyancy loads, deck loads and cargo loads. The hatch coaming are considered to deflect under the loads. Because of symmetry, only the half of the frame is analyzed. The method is to obtain the forces and moments on each member. The deformation of the frame can be determined from the nodal displacements. For a sample calculation, a frame ring of a 10,000 ton class cargo liner is analyzed on the IBM 1130 computer. The numerical results obtained are proved to be resonable.

  • PDF

Quasi-reversibility of the Ring of 2 × 2 Matrices over an Arbitrary Field

  • Heidari, Dariush;Davvaz, Bijan
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.71-72
    • /
    • 2020
  • A ring R is quasi-reversible if 0 ≠ ab ∈ I(R) for a, b ∈ R implies ba ∈ I(R), where I(R) is the set of all idempotents in R. In this short paper, we prove that the ring of 2×2 matrices over an arbitrary field is quasi-reversible, which is an answer to the question given by Da Woon Jung et al. in [Bull. Korean Math. Soc., 56(4) (2019) 993-1006].

STRONG P-CLEANNESS OF TRIVIAL MORITA CONTEXTS

  • Calci, Mete B.;Halicioglu, Sait;Harmanci, Abdullah
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1069-1078
    • /
    • 2019
  • Let R be a ring with identity and P(R) denote the prime radical of R. An element r of a ring R is called strongly P-clean, if there exists an idempotent e such that $r-e=p{\in}P$(R) with ep = pe. In this paper, we determine necessary and sufficient conditions for an element of a trivial Morita context to be strongly P-clean.

DISTRIBUTIVE PROPERTIES OF ADDITION OVER MULTIPLICATION OF IDEMPOTENT MATRICES

  • Wanicharpichat, Wiwat
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1603-1608
    • /
    • 2011
  • Let R be a ring with identity. If a, b, $c{\in}R$ such that a+b+c = 1, then the distributive laws from addition over multiplication hold in R, that is a+(bc) = (a+b)(a+c) when ab = ba, and (ab)+c = (a+c)(b+c) when ac = ca. An application to obtains, if A,B are idempotent matrices and AB = BA = 0 then there exists an idempotent matrix C such that A + BC = (A + B)(A + C), and also A + BC = (I - C)(I - B). Some other cases and applications are also presented.