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Order of a General Linear Group GLn(A) over a Finite Ring A
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Abstract

In this article, we compute the order of a general linear group  over a finite ring .
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1. Backgrounds 
1

Some of the contents of the introduction in the 
article[1] will be quoted in this section for the readers' 
convenience due to the difficulty of the access to the 
article[1].

Various fields have been influenced by mathematics 
to develop and generalize their theories, and Cryptology 
is one of such fields. Especially, Mathematics has been 
playing an increasingly important role in cryptology 
since the invention of public key cryptography. In 1976, 
Diffie and Hellman proposed a new type of 
cryptosystem, called public key cryptosystem[2]: they 
gave the key exchange system whose security is based on 
the discrete logarithm problem[3] that is believed to be 
hard in mathematics. Since then, many public key 
systems have been invented using algebraic theories. The 
most widely used system is RSA (created by Rivest, 
Shamir, and Adlelman[4]) whose security is based on the 
factoring problem that is also believed to be hard in 
mathematics. The RSA algorithm is very simple because 
it uses the Euler's theorem which is known to be the easy 
and simple theorem in number theory.

While RSA uses a simple theorem in number theory, 
we gradually need more complicated knowledge of 
algebra, or number theory to understand ECC (Elliptic 
curve cryptosystem)[5], or XTR[6]. We need deeper 
theories in mathematics is to protect our systems from 
the attacks because they become more powerful due to 
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the rapidly growing technology.
In 1999, J. Koh attempted to generalize further 

cryptosystems by using algebraic structures. He first used 
a new concept of public keys, which he called the 
abstract keys. All cryptosystems proposed so far have 
finite key spaces, and so it is possible to use exhaustive 
key search to break some cryptosystems, e.g., DES with 
64-bit key size. However, an abstract key has an 
advantage that its key space has an infinite number of 
elements. As an example of abstract key space, we may 
take the set of all polynomials with integer coefficients. 
In the paper[1], we generalize the ElGamal type key 
exchange protocols using one of algebraic terminology, 
so called a group action as follows: The ElGamal-type 
cryptosystem based on discrete logarithm problem can be 
generalized in terms of group action.

Key generation: Let  be a group homomorphism from 
 to . Suppose that  is a group acting on a set .

Alice chooses  and a random exponent . She 
computes  in . The public key of Alice is 

.
Encryption: To encrypt a plaintext , Bob gets 

the public key  of Alice. He chooses a random 
exponent , and he computes  and .
He sends  to Alice.

Decryption: Alice computes the inverse of  in , i.e., 
. She recovers  by computing . In fact, 

.

In the paper[5], we study the key exchange system 
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using the theories in commutative algebra, in which the 
public keys are -modules defined by cohomologies 
of modules as follows:

(Abstract-key Exchange System using Ext-  
modules)[1,7]: Let  be a commutative ring, and 
denote the category of finitely generated -modules. For 
each integer , let  satisfies 
Serre’s  condition}. Let . Suppose  and  are 
publicly known.

(1) Alice chooses an ideal  of height .
(2) Alice computes , and sends it to 

Bob.
(3) Bob chooses an ideal  of height .
(4) Bob computes , and sends it to 

Alice.
(5) Alice computes , and 

Bob computes . The 
common key is .

In this article, we compute the order of a general linear 
group  over a finite ring  for the abstract key 
system using the theories in commutative algebra, 
especially matrices over commutative rings.

2. Computation of the order of a general 
linear group GLn(A) over a finite ring A

 In the paper[7], he introduces various abstract key 
cryptosytems using matrices over commutative rings. In 
his signature schemes on matrix rings, it is very 
important to find the order of a general linear group 

 over a finite ring  since the units in a matrix 
ring  play important roles in those systems. In 
this paper, we compute the order of a general linear 
group  over a finite ring .

The facts in the following Lemma 2.1 are all 
well-known, but we include the sketch of the proofs for 
completeness. We denote by  the set of all  by 

 matrices over a ring , and by  the set of all 
invertible matrices in .

Lemma 2.1. Let  be a ring with unity.
(1) If , i.e., the finite direct product of rings 

 with unity, then

 and

(2) 
(3) , where  denotes 

the Jacobson radical of a ring.
(4) If  is a field  of order , then the order of 

is

Proof. (1) It is easy to show that a map 
 by 

 is a ring isomorphism.
Since the unit group of a direct product of rings is 

isomorphic to the direct product of the unit group of each 
ring in general, we have the second part.

(2) Using block addition and multiplication, we can 
show .

(3) Note that the Jacobson radical of a ring  is the 
intersection of all the left annihilators of simple left 

-module, and is also the intersection of all maximal 
left ideals of . To show one of inequalities 

, suppose that 
. Then there is some entry .

Since  is the intersection of all the left annihilators 
of simple left -module, there is a simple left -module, 
say , such that . Noting that  is a 
simple left -module and 

, we may conclude .
For the other inequality, let , but 

not in . Then there is a maximal left ideal 
of  such that  since  is 
the intersection of all maximal left ideals of .
Consider the ideal  of . By the 
maximality, we have . Thus there 
are  and  such that 

. Since , so is 
, which implies that  if , and 

. Since each  is a unit, using the 
Gaussian Elimination we can show that  is 
non-singular. This is a contradiction since . In 
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all, we have th equality.

(4) We need to find the number of bases of an 
-dimensional vector space  over a field  (or, 
equivalently, the number of matrices such that all rows 
are linearly independent). Let  be a basis for 

. Then the number of the first choice  is , and 
the second choice  can be taken to be any vector which 
is not a multiple of , and so there are  choices for 

. The third component  can not be of the form 
. Thus the number of  is . Continuing 

this process, we finally arrive at 

We also need the following facts for the proofs of our 
main theorems:

Facts 2.2. (1) (Structure Theorem for Artin rings[8]) An 
Artin ring  is uniquely (up to isomorphism) expressed 
as a finite direct product of Artin local rings.

(2) If  is a ring, then the quotient ring  is 
semisimple[9].

(3) (Wedderburn-Artin[9]) The following con-  ditions 
on a ring  are equivalent:

(i)  is a non-zero semisimple left Artinian ring;
(ii) There exist division rings  and positive 

integers  such that .
(4) Every finite division ring is a field[9].

Even though Theorem 2.3 below also deals with a 
commutative ring case as well as a non-commutative 
case, we state and prove the following commutative case 
separately. First we compute the order of the general 
linear group  over a finite local ring . We 
define a local ring by a ring with a unique maximal ideal.

Theorem 2.3. Let  be a finite commutative ring with 
unity. Then

where  is a local ring with a maximal ideal  for 
.

Proof. Since  is a finite commutative ring, which is 
Artinian,  is isomorphic to the finite direct product of 
local rings , i.e., , by Fact 2.2 (1). 
Since  by Lemma 2.1, we 

know .

Now, to find the order of each , consider a 
map  defined by 

, where  is the image of  in .
Then  is a well-defined group homomorphism, and 
moreover is onto. Indeed, if , then 
there is  such that .
Then  for . Let 

. Then an  matrix  is invertible 
since  is a unit in a local ring , and so we can 
use the Gaussian elimimination. Thus  is also 
invertible, i.e.,  and . Let 
us consider a short exact sequence

.

It is easy to check that 
, and thus the order of ,

$. Hence

               ,

and 

      

Now, we compute the order of the general linear 
group  over an arbitrary finite ring .

Theorem 2.4. Let  be a finite ring with identity. Then

,

where  denotes the Jacobson radical of a ring, 
 are positive integers, and each  is a 

finite field.
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Proof. Let  be the Jacobson radical of , and 
consider a map  defined by 

, where  denotes the residue class of 
modulo . Then  is a well-defined group 
homomorphism, and we claim that  is onto. If 

, then there is 
such that . Thus .
Since  by Lemma 2.1, we 
know that  belongs to the intersection of all 
maximal left ideals of . Thus if ,
then  belongs to  for some maximal left ideal  of 

, and so , which is a contradiction. 
Hence , i.e.,  is onto.

Let us consider the following short exact sequence:

.

It is easy to check that 
. Since the order of ,

, we have 

     .

It remains to compute . Since 
is a finite semi-simple ring (and thus artinian 
semi-simple) by Facts 2.2 (2), there exist fields 
and positive integers  such that 

 by Facts 2.2 (3) and (4). Thus 

. We note that 

 by Lemma 2.1 , where 
. Hence

.
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