CORRIGENDUM TO "ON A GENERALIZATION OF RIGHT DUO RINGS" [BULL. KOREAN MATH. SOC. 53 (2016), NO.
 3, 925-942]

Nam Kyun Kim, Tai Keun Kwak, and Yang Lee

Recently, we find a gap in [2, Example 1.2(1)], and so we here provide a correct example.

Let R be a ring. The n by n full (resp., upper triangular) matrix ring over R is denoted by $\operatorname{Mat}_{n}(R)$ (resp., $U_{n}(R)$). Use $D_{n}(R)=\left\{\left(a_{i j}\right) \in U_{n}(R) \mid a_{11}=\right.$ $\left.\cdots=a_{n n}\right\}$ and $N_{n}(R)=\left\{\left(a_{i j}\right) \in D_{n}(R) \mid a_{11}=\cdots=a_{n n}=0\right\}$.
Example 1.2(1) We apply the construction and argument in [1, Example 4]. Let $F=\mathbb{Z}_{2}$ be the field of integers modulo 2 , and $S=F[t]$ be the polynomial ring with an indeterminate t over F. Define a ring homomorphism $\sigma: S \rightarrow S$ by $\sigma(f(t))=f\left(t^{2}\right)$. Consider the skew polynomial ring $T_{0}=S[x ; \sigma]$ over S by σ, in which every element is of the form $\sum_{i=0}^{m} x^{i} a_{i}$, only subject to $s x=x \sigma(s)$ for each $s \in S$. Let $T_{1}=T_{0} / x^{2} T_{0}$. We identify each element of T_{0} with the image in T_{1} for simplicity. Then every element of T_{1} is of the form $s_{0}+x s_{1}$ with $s_{i} \in S$.

For every $f(t)=a_{0}+a_{1} t+\cdots+a_{l} t^{l} \in F[t]$, notice that

$$
\begin{align*}
f(t)^{2}= & a_{0}^{2}+2 a_{0} a_{1} t+a_{1}^{2} t^{2}+\cdots+a_{p}^{2} t^{2 p}+\cdots+2 a_{p} a_{q} t^{p+q}+\cdots \\
& +a_{q}^{2} t^{2 q}+\cdots+a_{l}^{2} t^{2 l} \\
= & a_{0}+a_{1} t^{2}+\cdots+a_{p} t^{2 p}+\cdots+a_{q} t^{2 q}+\cdots+a_{l} t^{2 l} \tag{*}\\
= & \sigma(f(t))
\end{align*}
$$

for $p<q$, recalling $F=\{0,1\}$.
Next, consider

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a \in S \text { and } b \in x T_{1}\right\}
$$

[^0]a subring of $D_{2}\left(T_{1}\right)$. Let
\[

A=\left($$
\begin{array}{ll}
t & 0 \\
0 & t
\end{array}
$$\right) and B=\left($$
\begin{array}{ll}
0 & x \\
0 & 0
\end{array}
$$\right) in R,
\]

and consider the left ideal $R A^{n}$ of R, where n is any positive integer. Every element in the right ideal $A^{n} R$ is of the form

$$
A^{n} C=\left(\begin{array}{cc}
t^{n} & 0 \\
0 & t^{n}
\end{array}\right)\left(\begin{array}{cc}
c & x d \\
0 & c
\end{array}\right)=\left(\begin{array}{cc}
t^{n} c & x t^{2 n} d \\
0 & t^{n} c
\end{array}\right)
$$

for any $C=\left(\begin{array}{cc}c & x d \\ 0 & c\end{array}\right) \in R$ with $0 \neq d \in F[t]$. So

$$
B A^{n}=\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
t^{n} & 0 \\
0 & t^{n}
\end{array}\right)=\left(\begin{array}{cc}
0 & x t^{n} \\
0 & 0
\end{array}\right)
$$

cannot be contained in $A^{n} R$, entailing $R A^{n} \nsubseteq A^{n} R$. Thus R is not weakly right duo.

We claim that R is right π-duo. Let $D=\left(\begin{array}{cc}f & x e \\ 0 & f\end{array}\right) \in R$ and $g=x e$. For any $n \geq 1$, we have

$$
D^{n}=\left(\begin{array}{ll}
f & g \\
0 & f
\end{array}\right)^{n}=\left(\begin{array}{cc}
f^{n} & f^{n-1} g+f^{n-2} g f+\cdots+f g f^{n-2}+g f^{n-1} \\
0 & f^{n}
\end{array}\right)
$$

and

$$
\begin{aligned}
E D^{n} & =\left(\begin{array}{ll}
h & k \\
0 & h
\end{array}\right)\left(\begin{array}{ll}
f & g \\
0 & f
\end{array}\right)^{n} \\
& =\left(\begin{array}{cc}
h f^{n} & h\left(f^{n-1} g+f^{n-2} g^{f}+\cdots+f g f^{n-2}+g f^{n-1}\right)+k f^{n} \\
0 & h f^{n}
\end{array}\right),
\end{aligned}
$$

where $E=\left(\begin{array}{cc}h & k \\ 0 & h\end{array}\right) \in R$. Here let $n=3$. Then, by using the equality (*) (i.e., $f^{2}=\sigma(f)$), we obtain

$$
\begin{aligned}
&\left(\begin{array}{cc}
h f^{3} & h\left(f^{2} g+f g f+g f^{2}\right)+k f^{3} \\
0 & h f^{3}
\end{array}\right) \\
&=\left(\begin{array}{cc}
h f^{3} & h f^{2} g+h f g f+h g f^{2}+k f^{3} \\
0 & h f^{3}
\end{array}\right) \\
&=\left(\begin{array}{cc}
h f^{3} & h f^{2} g+h f g f+h g \sigma(f)+k \sigma(f) f \\
0 & h f^{3}
\end{array}\right) \\
&=\left(\begin{array}{cc}
h f^{3} & h f^{2} g+h f g f+h f g+f k f \\
0 & h f^{3}
\end{array}\right) \\
&=\left(\begin{array}{cc}
h f^{3} & f(h f g+h g f+h g+k f) \\
0 & h f^{3}
\end{array}\right) \\
&=\left(\begin{array}{cc}
h f^{3} & f[g \sigma(h f)+g \sigma(h) f+g \sigma(h)+k f] \\
0 & h f^{3}
\end{array}\right) \\
&=\left(\begin{array}{cc}
h f^{3} & f[g \sigma(h f)+g \sigma(h) f+g \sigma(h)+k f-g h]+f g h \\
0 & h f^{3}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
h f^{3} & f[g \sigma(h f)+g \sigma(h) f+g \sigma(h)+k f-g h]+g h f^{2} \\
0 & h f^{3}
\end{array}\right) \\
& =\left(\begin{array}{cc}
f & g \\
0 & f
\end{array}\right)\left(\begin{array}{cc}
h f^{2} & g \sigma(h f)+g \sigma(h) f+g \sigma(h)+k f-g h \\
0 & h f^{2}
\end{array}\right) \in D R,
\end{aligned}
$$

entailing $R D^{3} \subseteq D R$. Therefore R is right π-duo.

References

[1] H. K. Kim, N. K. Kim, and Y. Lee, Weakly duo rings with nil Jacobson radical, J. Korean Math. Soc. 42 (2005), no. 3, 457-470.
[2] N. K. Kim, T. K. Kwak, and Y. Lee, On a generalization of right duo rings, Bull. Korean Math. Soc. 53 (2016), no. 3, 925-942.

Nam Kyun Kim
School of Basic Sciences
Hanbat National University
Daejeon 34158, Korea
Email address: nkkim@hanbat.ac.kr
Tai Keun Kwak
Institute of Basic Science
Daejin University
Pocheon 11159, Korea
Email address: tkkwak@daejin.ac.kr
Yang Lee
Department of Mathematics Education
Pusan National University
Pusan 46241, Korea
And
Current address: Institute of Basic Science
Daejin University
Pocheon 11159, Korea
Email address: ylee@pusan.ac.kr

[^0]: Received August 12, 2017; Accepted October 17, 2017.
 2010 Mathematics Subject Classification. Primary 16D25, 16N20; Secondary 16N40, 16S36.

 Key words and phrases. right π-duo ring, (weakly) right duo ring, (strongly) π-regular ring, every prime ideal is maximal, polynomial ring, matrix ring.

