Browse > Article
http://dx.doi.org/10.4134/JKMS.j140645

AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 × 2 MATRICES  

Ma, Xiaobin (Department of Mathematics China University of Mining and Technology)
Wang, Dengyin (China University of Mining and Technology)
Zhou, Jinming (Department of Mathematics China University of Mining and Technology, Department of Mathematics Hefei Normal University)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.3, 2016 , pp. 519-532 More about this Journal
Abstract
The zero-divisor graph of a noncommutative ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are nonzero zero-divisors of R, and there is a directed edge from a vertex x to a distinct vertex y if and only if xy = 0. Let $R=M_2(F_q)$ be the $2{\times}2$ matrix ring over a finite field $F_q$. In this article, we investigate the automorphism group of ${\Gamma}(R)$.
Keywords
automorphism; zero-divisor graph; noncommutative ring; matrix ring;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Akbari and A. Mohammadian, Zero-divisor graphs of non-commutative rings, J. Algebra 296 (2006), no. 2, 462-479.   DOI
2 D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61-72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
3 D. F. Anderson and J. D. LaGrange, Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph, J. Pure Appl. Algebra 216 (2012), no. 7, 1626-1636.   DOI
4 D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221-241.   DOI
5 D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.   DOI
6 M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043-2050.   DOI
7 I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.   DOI
8 J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, and S. Spiroff, On zero divisor graphs, in C. Francisco, et al. (Eds.), Progress in Commutative Algebra II: Closures, Finiteness and Factorization, de Gruyter, Berlin, 2012.
9 F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (2005), no. 1, 190-198.   DOI
10 F. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), no. 2, 206-214.   DOI
11 F. DeMeyer and K. Schneider, Automorphisms and zero divisor graphs of commutative rings, Commutative rings, 25-37, Nova Sci. Publ., Hauppauge, NY, 2002.
12 J. Han, The zero-divisor graph under group actions in a noncommutative ring, J. Korean Math. Soc. 45 (2008), no. 6, 1647-1659.   DOI
13 T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174-193.   DOI
14 S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558.   DOI
15 S. Park and J. Han, The group of graph automorphisms over a matrix ring, J. Korean Math. Soc. 48 (2011), no. 2, 301-309.   DOI
16 S. P. Redmond, The zero-divisor graph of a noncommutative ring, Int. J. Commut. Rings 1 (2002), no. 4, 203-211.
17 S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348.   DOI