KYUNGPOOK Math. J. 60(2020), 71-72
https://doi.org/10.5666/KMJ.2020.60.1.71
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Quasi-reversibility of the Ring of 2×2 Matrices over an Arbitrary Field

Dariush Heidari*

Faculty of science, Mahallat Institute of Higher Education, Mahallat, Iran
e-mail: dheidari82@gmail.com
Bijan Davvaz
Department of Mathematics, Yazd University, Yazd, Iran
e-mail: davvaz@yazd.ac.ir
Abstract. A ring R is quasi-reversible if $0 \neq a b \in I(R)$ for $a, b \in R$ implies $b a \in I(R)$, where $I(R)$ is the set of all idempotents in R. In this short paper, we prove that the ring of 2×2 matrices over an arbitrary field is quasi-reversible, which is an answer to the question given by Da Woon Jung et al. in [Bull. Korean Math. Soc., 56(4) (2019) 993-1006].

1. Introduction

Let R be a ring. Use $I(R)$ to denote the set of all idempotents in R and $I(R)^{\prime}=I(R) \backslash\{0\}$. Let $M a t_{n}(R)$ be $n \times n$ matrix ring over R. Following Da Woon Jung et. al. [1] a ring R is quasi-reversible provided that if $a b \in I(R)^{\prime}$ for $a, b \in R$, then $b a \in I(R)$.
Theorem 1.1.([1, Theorem 1.8]) Mat $\mathrm{M}_{2}\left(\mathbb{Z}_{2}\right)$ is quasi-reversible.

2. Main Result

Now, we propose an answer to Question 1 stated in Da Woon Jung et. al. [1].
Question 2.1. Let K be a field. Is $M a t_{2}(K)$ quasi-reversible?
Theorem 2.2. Let K be a filed. Then $M a t_{2}(K)$ is quasi-reversible.
Proof. Let K be a field and $A, B \in \operatorname{Mat}_{2}(K)$ such that $A B \in I\left(M a t_{2}(K)\right)^{\prime}$. If A is invertible, then

$$
B A=A^{-1}(A B) A=A^{-1}(A B A B) A=B A B A
$$

* Corresponding Author.

Received September 14, 2019; accepted January 29, 2020.
2020 Mathematics Subject Classification: 16S50.
Key words and phrases: quasi-reversible ring, matrix ring.

Hence $B A \in I\left(M a t_{2}(K)\right)$. Similarly, if B is invertible, then $B A$ is idempotent. It remains to consider the case that A and B are non-invertible. To this end we prove the following claims:
Claim 1. If $M=\left(m_{i j}\right)$ is a singular 2×2 matrix, then $M^{2}=\operatorname{tr}(M) M$ where, $\operatorname{tr}(M)=m_{11}+m_{22}$.
Proof of Claim 1. Since $|M|=0$, it follows that $m_{11} m_{22}=m_{12} m_{21}$. Consequently, we have

$$
\begin{aligned}
M^{2} & =\left(\begin{array}{cc}
m_{11}^{2}+m_{12} m_{21} & m_{11} m_{12}+m_{12} m_{22} \\
m_{11} m_{21}+m_{21} m_{12} & m_{12} m_{21}+m_{22}^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
m_{11}^{2}+m_{11} m_{22} & m_{12}\left(m_{11}+m_{22}\right) \\
m_{21}\left(m_{11}+m_{22}\right) & m_{11} m_{22}+m_{22}^{2}
\end{array}\right) \\
& =\left(m_{11}+m_{22}\right) M \\
& =\operatorname{tr}(M) M .
\end{aligned}
$$

Claim 2. If $M=\left(m_{i j}\right)$ is a non-zero singular and idempotent 2×2 matrix, then $\operatorname{tr}(M)=1$.
Proof of Claim 2. By Claim 1, we have $0 \neq M=M^{2}=\operatorname{tr}(M) M$ thus $(\operatorname{tr}(M)-$ 1) $M=0$ and hence $\operatorname{tr}(M)=1$.

Now, Let A and B be two non-invertible matrices such that $A B \in I\left(M a t_{2}(K)\right)^{\prime}$. Then, Claim 2 concludes $\operatorname{tr}(A B)=1$. Thus, by Claim 1 we deduce that

$$
(B A)^{2}=\operatorname{tr}(B A) B A=\operatorname{tr}(A B) B A=B A
$$

Therefore, $B A$ is idempotent and the proof is completed.

References

[1] D. W. Jung, C. I. Lee, Y. Lee, S. Park, S. J. Ryu, H. J. Sung and S. J. Yun, On reversibility related to idempotents, Bull. Korean Math. Soc., 56(4)(2019), 993-1006.

