• Title/Summary/Keyword: Mathematics Activities

Search Result 727, Processing Time 0.025 seconds

A Study of Secondary Mathematics Materials at a Gifted Education Center in Science Attached to a University Using Network Text Analysis (네트워크 텍스트 분석을 활용한 대학부설 과학영재교육원의 중등수학 강의교재 분석)

  • Kim, Sungyeun;Lee, Seonyoung;Shin, Jongho;Choi, Won
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.465-489
    • /
    • 2015
  • The purpose of this study is to suggest implications for the development and revision of future teaching materials for mathematically gifted students by using network text analysis of secondary mathematics materials. Subjects of the analysis were learning goals of 110 teaching materials in a gifted education center in science attached to a university from 2002 to 2014. In analysing the frequency of the texts that appeared in the learning goals, key words were selected. A co-occurrence matrix of the key words was established, and a basic information of network, centrality, centralization, component, and k-core were deducted. For the analysis, KrKwic, KrTitle, and NetMiner4.0 programs were used, respectively. The results of this study were as follows. First, there was a pivot of the network formed with core hubs including 'diversity', 'understanding' 'concept' 'method', 'application', 'connection' 'problem solving', 'basic', 'real life', and 'thinking ability' in the whole network from 2002 to 2014. In addition, knowledge aspects were well reflected in teaching materials based on the centralization analysis. Second, network text analysis based on the three periods of the Mater Plan for the promotion of gifted education was conducted. As a result, a network was built up with 'understanding', and there were strong ties among 'question', 'answer', and 'problem solving' regardless of the periods. On the contrary, the centrality analysis showed that 'communication', 'discovery', and 'proof' only appeared in the first, second, and third period of Master Plan, respectively. Therefore, the results of this study suggest that affective aspects and activities with high cognitive process should be accompanied, and learning goals' mannerism and ahistoricism be prevented in developing and revising teaching materials.

The Study on the Influence that the Understanding Degree about the Sentence Stated Math. Problems Reach the Extension of the Problem Solving Capacity. - Focusing on the Unit of Equation and Inequality in Middle School - (문장제에 대한 이해정도가 문제해결력 신장에 미치는 영향에 대한 연구 -중학교 방정식과 부등식 단원을 중심으로-)

  • 지재근;오세열
    • Journal of the Korean School Mathematics Society
    • /
    • v.3 no.1
    • /
    • pp.189-200
    • /
    • 2000
  • The purpose of this thesis is that the students understand the sentence stated math problems closely related to the real life and adapted the right solving strategies try to find the solution to a problem. The following research problem were proposed. 1. How repeated thinking lessons develop the understanding of problems and influence the usage of correct problem solving strategies and extensions of problem solving. 2. There are how much differences of achievement for each type of sentence stated problems by using comparative analysis of upper class, intermediate class, and lower class for each level between the experimental and comparative classes. In order to conduct this research the classes were divided into three different level - upper class, intermediate class and lower class. Each level include an experimental class and a comparative class. The two classes (experimental class and comparative class) of the same level were tested on the basis of class division record with the experimental class repeated learning papers for two weeks were used to guide the fixed thinking algorism for each sentence stated math problems. Eight common problems were chosen from a variety of textbooks : number calculation problems, velocity-distance-time problems, the density of a mixture, benefit problems, distribution problems, problems about working, ratio problems, the length of a figure problems. After conducting this research experiment The differences in achievement level between the experimental class and comparative class, were compared and analyzed through achievement tests made from the achievement test papers with seven problems, which were worth seventy points (total score). The conclusions of this thesis are as follows: Firstly, leaning activities through the usage of repeated learning papers for each level class produce an even development of achievement level especially in the case of the upper class learners, they have particular differences (between experimental class and comparative class) compared to the intermediate level and lower classes. Secondly, according to the analysis about achievement development each problems, learners easily accept the strategies of solution through the formula setting up to the problem of velocity -distance-time, and to the density of the mixture they adapted the picture drawing strategies interestingly, However each situation requires a variety of appropriate solution strategies. Teachers will have to employ other interesting solution strategies which relate to real life.

  • PDF

Developing the mathematics model textbook based on storytelling with real-life context - Focusing on the coordinate geometry contents - (실생활 연계형 스토리텔링 수학 교과서 개발 -도형의 방정식 단원을 중심으로-)

  • Kim, Yujung;Kim, Ji Sun;Park, Sang Eui;Park, Kyoo-Hong;Lee, Jaesung
    • Communications of Mathematical Education
    • /
    • v.27 no.3
    • /
    • pp.179-203
    • /
    • 2013
  • The purpose of this study was to discuss the example that developed geometry model textbook based on storytelling using real-life context. To achieve this purpose, we first elaborated the meaning of the textbook based on storytelling with real-life context, and then we discussed the outline of the story and the summary of each lesson. This study defined the storytelling textbook with real-life context as the textbook consisting of activities that explored and organized mathematical concepts by using real-life situations as materials of stories. The geometry textbook we developed employed two real-life materials, a map and a set square: we used a map for the coordinate geometry and a set square for the equation of a line. To attract students' interest, we introduced confrontation between a teacher and two students and a villain. We implemented experimentation with the textbook based on storytelling in order to verify its validity. The participants were 25 students that were enrolled in a high school in Seoul. Among them, 17 participants were surveyed. Students' answers from the survey questionnaire suggested that the geometry textbook we developed based on storytelling helped them learn mathematics and that the instruments such as a map and a set square helped them understand mathematical concepts. However, their opinion implied that the story of the textbook needed to be improved so that the story reflected more realistic contexts that were familiar with students.

Development of teaching and learning materials by using GeoGebra and it's application effects for high school mathematically gifted students (GeoGebra를 활용한 교수.학습이 과학고등학교 수학영재들의 인지적 측면에 미치는 영향)

  • Kim, Mu Jin;Lee, Jong Hak;Kim, Wonkyung
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.3
    • /
    • pp.359-384
    • /
    • 2014
  • The purpose of this study is inquire the reaction and adaptability of the mathematically gifted student, in the case of introduce learning materials based on GeoGebra in real class. The study program using GeoGebra consist of 'construction of fundamental figures', 'making animation with using slider tools' (graph of a function, trace of a figure, definite integral, fixed point, and draw a parametric curve), make up the group report after class. In detail, 1st to 15th classes are mainly problem-solving, and topic-exploring classes. To analyze the application effects of developed learning materials, divide students in four groups and lead them to make out their own creative products. In detail, guide students to make out their own report about mathematical themes that based on given learning materials. Concretely, build up the program to make up group report about their own topics in six weeks, after learning on various topics. Expert panel concluded that developed learning materials are successfully stimulate student's creativity in various way, after analyze of the student's activities. Moreover, those learning programs also contributed to the develop of the mathematical ability to thinking that necessary to writing a report. As well, four creative products are assessed as connote mathematically gifted student's creative thinking and meaningful elements in mathematical aspects.

  • PDF

A Study on the Learning-Teaching Plan about a Essential Concept of Decimal Fraction Based on Decimal Positional Notation (위치적 십진기수법을 본질로 하여 조직한 소수 개념 지도 방안 연구)

  • Kang, Heung-Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.199-219
    • /
    • 2011
  • In this thesis, we designed a experimental learning-teaching plan of 'decimal fraction concept' at the 4-th grade level. We rest our plan on two basic premises. One is the fact that a essential concept of decimal fraction is 'polynomial of which indeterminate is 10', and another is the fact that the origin of decimal fraction is successive measurement activities which improving accuracy through decimal partition of measuring unit. The main features of our experimental learning-teaching plan is as follows. Firstly, students can experience a operation which generate decimal unit system through decimal partitioning of measuring unit. Secondly, the decimal fraction expansion will be initially introduced and the complete representation of decimal fraction according to positional notation will follow. Thirdly, such various interpretations of decimal fraction as 3.751m, 3m+7dm+5cm+1mm, $(3+\frac{7}{10}+\frac{5}{100}+\frac{1}{1000})m$ and $\frac{3751}{1000}m$ will be handled. Fourthly, decimal fraction will not be introduced with 'unit decimal fraction' such as 0.1, 0.01, 0.001, ${\cdots}$ but with 'natural number+decimal fraction' such as 2.345. Fifthly, we arranged a numeration activity ruled by random unit system previous to formal representation ruled by decimal positional notation. A experimental learning-teaching plan which presented in this thesis must be examined through teaching experiment. It is necessary to successive research for this task.

  • PDF

The Sociodynamical Function of Meta-affect in Mathematical Problem-Solving Procedure (수학 문제해결 과정에 작용하는 메타정의의 사회역학적 기능)

  • Do, Joowon;Paik, Suckyoon
    • Education of Primary School Mathematics
    • /
    • v.20 no.1
    • /
    • pp.85-99
    • /
    • 2017
  • In order to improve mathematical problem-solving ability, there has been a need for research on practical application of meta-affect which is found to play an important role in problem-solving procedure. In this study, we analyzed the characteristics of the sociodynamical aspects of the meta-affective factor of the successful problem-solving procedure of small groups in the context of collaboration, which is known that it overcomes difficulties in research methods for meta-affect and activates positive meta-affect, and works effectively in actual problem-solving activities. For this purpose, meta-functional type of meta-affect and transact elements of collaboration were identified as the criterion for analysis. This study grasps the characteristics about sociodynamical function of meta-affect that results in successful problem solving by observing and analyzing the case of the transact structure associated with the meta-functional type of meta-affect appearing in actual episode unit of the collaborative mathematical problem-solving activity of elementary school students. The results of this study suggest that it provides practical implications for the implementation of teaching and learning methods of successful mathematical problem solving in the aspect of affective-sociodynamics.

A Case Study on Students' Problem Solving in process of Problem Posing for Equation at the Middle School Level (방정식의 문제 만들기 활동에서 문제구조를 중심으로 문제해결에 관한 연구)

  • ChoiKoh, Sang-Sook;Jeon, Sung-Hoon
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.109-128
    • /
    • 2009
  • This study aimed to investigate students' learning process by examining their perception process of problem structure and mathematization, and further to suggest an effective teaching and learning of mathematics to improve students' problem-solving ability. Using the qualitative research method, the researcher observed the collaborative learning of two middle school students by providing problem-posing activities of five lessons and interviewed the students during their performance. The results indicated the student with a high achievement tended to make a similar problem and a new problem where a problem structure should be found first, had a flexible approach in changing its variability of the problem because he had advanced algebraic thinking of quantitative reasoning and reversibility in dealing with making a formula, which related to developing creativity. In conclusion, it was observed that the process of problem posing required accurate understanding of problem structures, providing students an opportunity to understand elements and principles of the problem to find the relation of the problem. Teachers may use a strategy of simplifying external structure of the problem and analyzing algebraical thinking necessary to internal structure according to students' level so that students are able to recognize the problem.

  • PDF

The Effects of the FOCUS Problem Solving Steps on Mathematical Problem Solving Ability and Mathematical Attitudes (FOCUS 문제해결과정이 수학 문제해결력 및 수학적 태도에 미치는 영향)

  • Lee, Yeon Joo;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.243-262
    • /
    • 2017
  • This study has its purpose on improving mathematic education by analyzing the effects of the teaching and learning process which adopted 'FOCUS Problem Solving Steps' on student's mathematical problem solving ability and their mathematical attitude. The result is as follows. First, activities through FOCUS Problem Solving Steps showed positive effect on students' problem solving ability. Second, among mathematical attitudes, mathematical curiosity, reflection and value are proved to have statistically meaningful effect and from the result that analyzed changes of subject students, we could suppose that all 6 elements of mathematical attitude had positive effect. Third, by solving questions through FOCUS steps, students felt satisfaction when they success by themselves. If projects which adopted FOCUS Problem Solving Steps take effect continuously by happiness from the process of reviewing and reflecting their own fallacy and solving that, we might expect meaningful effect on students' problem solving ability. Through this study, FOCUS Problem Solving Steps had positive effect not only on students' mathematical problem solving ability but also on formation of mathematical attitude. As a result, it implies that FOCUS Problem Solving Steps need to be applied to other grades and fields and then studied more.

  • PDF

Study on the status and gifted students' perception on the curriculum implementation of Busan Science Academy (과학영재학교 교육과정 운영실태와 학생 인식 분석)

  • Park, Soo-Kyong;Choe, Ho-Seong;Park, Il-Young;Jung, Gwon-Sun
    • Journal of Gifted/Talented Education
    • /
    • v.13 no.4
    • /
    • pp.45-63
    • /
    • 2003
  • The purpose of this study is to analyze the status and gifted students' perception on curriculum implementation for gifted education at Busan Science Academy. For the purpose, we investigated the curriculum documents, the process of implementing curriculum and the result of the questionnaire. The questionnaire about the curriculum courses, teaching strategies and evaluation method was answered by 143 students at Busan Science Academy. The curriculum courses are composed of general courses and specialized courses: general courses comprise of Korean language, social studies, foreign languages, arts, and physical education. Specialized courses consist of mathematics, physics, chemistry, biology, earth science, information science. Elective courses are divided into basic elective courses and in-depth courses. Each in-depth course deals with more specialized content. The significant results of the questionnaire are as follows: First, according to gifted students' perception, the credits of specialized courses and in-depth elective courses need to be increased and the credits of general courses need to be reduced. Second, teachers at this school mainly use teaching strategies such as lecture, group activities and discussion, but the students prefer diverse teaching strategies such as lecture, discussion, experiment, individual research, problem solving and field studies. Third, students prefer a paper-and-pencil testing assesment rather than a written report assesment and lab experiment assesment. According to this study, the characteristics of the acceleration curriculum at Busan Science Academy were too intensive. Thus it is difficult to implement the enrichment education according to the demand of gifted students in this school. Therefore, this study suggests that we need to revise the curriculum courses of Busan Science Academy and develop contents and strategies for gifted education in science and mathematics.

Identifying Key Competencies Required for STEM Occupations (과학, 기술, 공학, 수학(STEM) 직종에 요구되는 핵심 역량 분석)

  • Jang, Hyewon
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.781-792
    • /
    • 2018
  • In modern society, as technology develops and industry diversifies, students can choose from a variety of career paths. Since science, technology, engineering, and mathematics require a longer education and experience than other fields, it is important to design science education policies based on the competencies required for science, technology, engineering, and mathematics (STEM) occupations. This study explores the definition of science and technology manpower and STEM occupations and identifies core competencies of STEM occupations using standard job information operated and maintained by the US Department of Labor ($O^*NET$). We specially analyzed ratings of the importance of skills (35 ratings), knowledge (33 ratings), and work activities (41 ratings) conducting descriptive analysis and principal component analysis (PCA). As a result, core competencies of STEM occupations consist of STEM problem-solving competency, Management competency, Technical competency, Social service competency, Teaching competency, Design competency, Bio-chemistry competency, and Public service competency, which accounts for 70% of the total variance. This study can be a reference for setting the curriculum and educational goals in secondary and college education by showing the diversity of science and technology occupations and the competencies required for STEM occupations.