• Title/Summary/Keyword: Mathematical problem

Search Result 3,797, Processing Time 0.025 seconds

EXISTENCE RESULTS FOR VECTOR NONLINEAR INEQUALITIES

  • Lee, Suk-Jin;Lee, Byung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.737-743
    • /
    • 2003
  • The purpose of this paper is to consider some existence results for vector nonlinear inequalities without any monotonicity assumption. As consequences of our main result, we give some existence results for vector equilibrium problem, vector variational-like inequality problem and vector variational inequality problems as special cases.

GLOBAL COUPLING EFFECTS ON A FREE BOUNDARY PROBLEM FOR THREE-COMPONENT REACTION-DIFFUSION SYSTEM

  • Ham, Yoon-Mee
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.659-676
    • /
    • 2006
  • In this paper, we consider three-component reaction-diffusion system. With an integral condition and a global coupling, this system gives us an interesting free boundary problem. We shall examine the occurrence of a Hopf bifurcation and the stability of solutions as the global coupling constant varies. The main result is that a Hopf bifurcation occurs for global coupling and this motion is transferred to the stable motion for strong global coupling.

A METHOD FOR COMPUTING UPPER BOUNDS ON THE SIZE OF A MAXIMUM CLIQUE

  • Kim, Koon-Chan
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.745-754
    • /
    • 2003
  • Maximum clique problem is to find a maximum clique(largest in size) in an undirected graph G. We present a method that computes either a maximum clique or an upper bound for the size of a maximum clique in G. We show that this method performs well on certain class of graphs and discuss the application of this method in a branch and bound algorithm for solving maximum clique problem, whose efficiency is depended on the computation of good upper bounds.

PRECONDITIONED SSOR METHODS FOR THE LINEAR COMPLEMENTARITY PROBLEM WITH M-MATRIX

  • Zhang, Dan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.657-670
    • /
    • 2019
  • In this paper, we consider the preconditioned iterative methods for solving linear complementarity problem associated with an M-matrix. Based on the generalized Gunawardena's preconditioner, two preconditioned SSOR methods for solving the linear complementarity problem are proposed. The convergence of the proposed methods are analyzed, and the comparison results are derived. The comparison results showed that preconditioned SSOR methods accelerate the convergent rate of the original SSOR method. Numerical examples are used to illustrate the theoretical results.

ZERO-KNOWLEDGE PROOFS FROM SPLWE-BASED COMMITMENTS

  • Kim, Jinsu;Kim, Dooyoung
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Recently, an LWE-based commitment scheme is proposed. Their construction is statistically hiding as well as computationally binding. On the other hand, the construction of related zero-knowledge protocols is left as an open problem. In this paper, we present zero-knowledge protocols with hardness based on the LWE problem. we show how to instantiate efficient zero-knowledge protocols that can be used to prove linear and sum relations among these commitments. In addition, we show how the variant of LWE, spLWE problem, can be used to instantiate efficient zero-knowledge protocols.

APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING EQUILIBRIUM AND MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACE

  • Khoa, Nguyen Minh;Thang, Tran Van
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.1019-1044
    • /
    • 2022
  • In this paper, we propose new algorithms for solving equilibrium and multivalued variational inequality problems in a real Hilbert space. The first algorithm for equilibrium problems uses only one approximate projection at each iteration to generate an iteration sequence converging strongly to a solution of the problem underlining the bifunction is pseudomonotone. On the basis of the proposed algorithm for the equilibrium problems, we introduce a new algorithm for solving multivalued variational inequality problems. Some fundamental experiments are given to illustrate our algorithms as well as to compare them with other algorithms.

PRIME-PRODUCING POLYNOMIALS RELATED TO CLASS NUMBER ONE PROBLEM OF NUMBER FIELDS

  • Jun Ho Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.315-323
    • /
    • 2023
  • First, we recall the results for prime-producing polynomials related to class number one problem of quadratic fields. Next, we give the relation between prime-producing cubic polynomials and class number one problem of the simplest cubic fields and then present the conjecture for the relations. Finally, we numerically compare the ratios producing prime values for several polynomials in some interval.

An Iterative Method for Equilibrium and Constrained Convex Minimization Problems

  • Yazdi, Maryam;Shabani, Mohammad Mehdi;Sababe, Saeed Hashemi
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • We are concerned with finding a common solution to an equilibrium problem associated with a bifunction, and a constrained convex minimization problem. We propose an iterative fixed point algorithm and prove that the algorithm generates a sequence strongly convergent to a common solution. The common solution is identified as the unique solution of a certain variational inequality.

GENERALIZED PROXIMAL ITERATIVELY REWEIGHTED ℓ1 ALGORITHM WITH CO-COERCIVENESS FOR NONSMOOTH AND NONCONVEX MINIMIZATION PROBLEM

  • Myeongmin Kang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • The nonconvex and nonsmooth optimization problem has been widely applicable in image processing and machine learning. In this paper, we propose an extension of the proximal iteratively reweighted ℓ1 algorithm for nonconvex and nonsmooth minmization problem. We assume the co-coerciveness of a term of objective function instead of Lipschitz gradient condition, which is generalized property of Lipschitz continuity. We prove the global convergence of the proposed algorithm. Numerical results show that the proposed algorithm converges faster than original proximal iteratively reweighed algorithm and existing algorithms.

UNIVARIATE TRUNCATED MOMENT PROBLEMS VIA WEAKLY ORTHOGONAL POLYNOMIAL SEQUENCES

  • Seonguk Yoo
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.25-36
    • /
    • 2024
  • Full univariate moment problems have been studied using continued fractions, orthogonal polynomials, spectral measures, and so on. On the other hand, the truncated moment problem has been mainly studied through confirming the existence of the extension of the moment matrix. A few articles on the multivariate moment problem implicitly presented about some results of this note, but we would like to rearrange the important results for the existence of a representing measure of a moment sequence. In addition, new techniques with orthogonal polynomials will be introduced to expand the means of studying truncated moment problems.