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PRECONDITIONED SSOR METHODS FOR THE LINEAR

COMPLEMENTARITY PROBLEM WITH M-MATRIX

Dan Zhang

Abstract. In this paper, we consider the preconditioned iterative meth-

ods for solving linear complementarity problem associated with an M -
matrix. Based on the generalized Gunawardena’s preconditioner, two

preconditioned SSOR methods for solving the linear complementarity
problem are proposed. The convergence of the proposed methods are an-

alyzed, and the comparison results are derived. The comparison results

showed that preconditioned SSOR methods accelerate the convergent rate
of the original SSOR method. Numerical examples are used to illustrate

the theoretical results.

1. Introduction

For a given matrix A ∈ Rn×n and a given vector f ∈ Rn, the linear com-
plementarity problem, abbreviated as LCP, consists of finding a vector x ∈ Rn
such that

(1.1) x ≥ 0, r = Ax− f ≥ 0, xT r = 0.

Here, the notation “ ≥ ” denotes the componentwise defined partial ordering
between two vectors, and the superscript T denotes the transpose of a given
vector.

The LCP of the form (1.1) arising in many scientific computing and engi-
neering applications, for example, contact problems with friction, free boundary
value problems of fluid mechanics, the solution of optimization and behavioral
models in biology and molecular biology, see [5,6,11]. The LCP (1.1) possesses
a unique solution if and only if A ∈ Rn×n is a P -matrix, namely, a matrix
whose all principal submatrices have positive determinants, see [5, 6, 22]. A
positive diagonal M -matrix (see Section 2) is a P -matrix, and the LCP (1.1)
with an M -matrix has the unique solution [4].

Numerical methods for LCP (1.1) have attracted much attentions. There
are three main classes of iterative methods for the solution of the LCP (1.1),
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that are the projected methods [14, 15, 21], the modulus algorithms [16] and
the modulus-based matrix splitting iterative methods [3,8,27,28], see [15] for a
survey of the solvers for LCP (1.1). We pay our attention in the present work
to the SSOR method [9, 26], which is a special projected method, for solving
the LCP (1.1) with an M -matrix.

Preconditioning techniques for solving the large sparse linear algebraic equa-
tions have been investigated in depth, a number of preconditioners for the
iterative methods were proposed [10, 13, 19, 20, 25]. In [12], Gunawardena et
al. proposed the preconditioner

P1 = I + S =


1 −a12 0 · · · 0
0 1 −a23 · · · 0
...

...
...

. . .
...

0 0 0 · · · −an−1,n

0 0 0 · · · 1


for solving the linear system with L-matrices. Toshiyuki Kohno et al. [17]
generalized the Gunawardena preconditioner P1 as

(1.2) P = I + S(α) =


1 −α1a12 0 · · · 0
0 1 −α2a23 · · · 0
...

...
...

. . .
...

0 0 0 · · · −αn−1an−1,n

0 0 0 · · · 1

 ,
where α1, . . . , αn−1 are real constants. The preconditioner P is used to ac-
celerate the convergent rate of the Gauss-Seidel method for solving the linear
system with an M -matrix.

In this paper, the preconditioner P in (1.2) is used to accelerate the con-
vergent rate of the SSOR method for solving the LCP of the form (1.1). Two
preconditioned SSOR (PSSOR) methods are proposed. In [7], Dai et al. also
give the preconditioner P to solve the LCP (see [7] for details). In the part of

numerical examples, SSOR method [9], Dai et al.’s method ( ˜PSSOR) [7] and
this paper’s method (PSSOR) are compared in the number of IT (iteration
steps) (see Table 4). Numerical examples tested show the prominent efficiency
of the proposed methods in some situations. The remainder of the paper are
organized as follows.

In Section 2, some preliminaries are given. The projected method for solv-
ing LCP is recalled, and two preconditioned SSOR methods are presented. In
Section 3, the convergence of the preconditioned SSOR methods are studied.
The comparison results about the convergent rates between the proposed pre-
conditioned SSOR methods with the original SSOR method for LCP (1.1) with
an M -matrix are given in Section 4. Numerical examples are given to demon-
strate our theoretical results in Section 5. Finally, a brief conclusion is drawn
in Section 6.
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2. Preliminaries

Let us first briefly summarise the notation. In reference to Rn and Rn×n,
the relation ≥ denotes partial ordering. In addition, for x, y ∈ Rn we write
x > y if xi > yi hold for i = 1, . . . , n. A nonsingular matrix A = (aij) ∈ Rn×n
is termed an M -matrix if aij ≤ 0 for i 6= j and A−1 ≥ 0. Its comparison matrix
〈A〉 = (αij) is defined by αii = |aii|, αij = −|aij |(i 6= j) for i, j = 1, . . . , n. A is
said to be an H-matrix if 〈A〉 is an M -matrix. For simplicity, we may assume
that aii = 1, i = 1, . . . , n.

Definition. For x ∈ Rn, vector x+ is defined such that (x+)j = max{0, xj},
j = 1, . . . , n. Then, for any x, y ∈ Rn. The following facts hold:

(1) (x+ y)+ ≤ x+ + y+;
(2) x+ − y+ ≤ (x− y)+;
(3) |x| = x+ + (−x)+; and
(4) x ≤ y implies that x+ ≤ y+.

The linear complementarity problem (1.1), conveniently denoted by LCP (1.1),
is equivalent to [1]

z = (z − αE(Az + f))+,

where α is a positive constant and the matrix E is positive diagonal. We
begin with a lemma together with its appropriate reference, a practice we also
continue elsewhere if no proof is provided.

Definition ([24]). Let A ∈ Rn×n. The representation A = M −N is called a
splitting of A if M is nonsingular. Then A = M −N is called

1. convergent if ρ(M−1N) < 1;
2. regular if M−1 ≥ 0, N ≥ 0;
3. weak regular if M−1 ≥ 0,M−1N ≥ 0;
4. an M -splitting of A if M is an M -matrix and N ≥ 0.

Lemma 2.1 ([20]). Let A = M−N be an M -splitting of A. Then ρ(M−1N) <
1 if and only if A is an M -matrix.

Lemma 2.2 ([2]). A is monotone if and only if A is nonsingular with A−1 ≥ 0.

Lemma 2.3 ([18]). Let A be an M -matrix, and x be a solution of LCP (1.1).
If fi > 0, then xi > 0 and therefore

∑n
j=1 aijxj − fi = 0. Moreover, if f ≤ 0,

then x = 0 is the solution of LCP (1.1).

Lemma 2.4 ([5]). Let A be a Z-matrix. Then the following statements are
equivalent:

(1) A is a nonsingular M -matrix.
(2) There exists a positive vector v > 0 such that Av > 0.
(3) Any weak regular splitting is convergent.

Lemma 2.5 ([23]). Suppose that A1 = M1 −N1 and A2 = M2 −N2 are weak
regular splittings of the monotone matrices A1 and A2, respectively, such that
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M−1
1 ≤M−1

2 . If there exists a positive vector x such that 0 ≤ A1x ≤ A2x, then
for the monotonic norm associated with x, ‖M−1

2 N2 ‖x≤‖M−1
1 N1 ‖x. In par-

ticular, if M−1
1 N1 has a positive Perron vector, then ρ(M−1

2 N2) ≤ ρ(M−1
1 N1).

Then, we will give a general preconditioning transformation for the linear
complementarity problem related with M -matrices and also recall SSOR meth-
ods for solving the LCP (1.1). The following result was proved in [4].

Lemma 2.6. Let A be an H-matrix with positive diagonal entries. Then the
LCP (1.1) has a unique solution x∗ ∈ Rn.

For the problem (1.1) with A = (aij) ∈ Rn×n and f = (fi) ∈ Rn, we denote

(2.1) Ã = PA = (ãij), f̃ = Pf = (f̃i),

where P satisfies (1.2). So it follows that

ãij =

{
aij − αiai,i+1ai+1,j , i 6= n, j = 1, 2, . . . , n,
anj , i = n, j = 1, 2, . . . , n,

and

f̃ij =

{
fi − αiai,i+1fi+1, i 6= n,
fn, i = n.

Lemma 2.7 ([25]). Let A = (aij) ∈ Rn×n be a nonsingular M -matrix. Then
there exists ε0 > 0 such that, for any 0 < ε ≤ ε0, A(ε) = (aij(ε)) is a nonsin-
gular M -matrix, where

aij(ε) =

{
aij , if aij 6= 0,
−ε, if aij = 0.

Definition ([9]). Let 0 < w < 2 and A = D − L− U , where D, L and U are
diagonal, strictly lower and upper triangular matrices, respectively. (E, F ) is
called the SSOR splitting of A if (E, F ) is a splitting of A,

E = 1/(w(2− w))(D − wL)D−1(D − wU) and

F = 1/(w(2− w))((1− w)D + wL)D−1((1− w)D + wU).

By using SSOR splitting, two SSOR methods for the LCP(1.1), are defined
as follows (see [9]):

Method 2.8. (SSOR I) :

(1) Choose an initial vector z0 ∈ Rn, a parameter w ∈ R+ and set k = 0;
(2) Calculate zk+1 = (zk −D−1[−wUzk+1 + (w(2−w)A+wU)zk −w(2−

w)f ])+;
(3) If zk+1 = zk, then stop, otherwise set k := k + 1 and return to Step

(2).

Method 2.9. (SSOR II) :

(1) Choose an initial vector z0 ∈ Rn, a parameter w ∈ R+ and set k = 0;
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(2) Calculate zk+1 = (zk −D−1[−wLzk+1 + (w(2−w)A+wL)zk −w(2−
w)f ])+;

(3) If zk+1 = zk, then stop, otherwise set k := k + 1 and return to Step
(2).

Let

(2.2) B1 = I − wD−1|L|, C1 = |I −D−1[w(2− w)A+ wL]|,

and

(2.3) B2 = I − wD−1|U |, C2 = |I −D−1[w(2− w)A+ wU ]|.

The following lemma follows from Theorem 2.1 and its proof in [9].

Lemma 2.10. Let A = (aij) ∈ Rn×n be an H-matrix with positive diagonal
elements. If 0 < w < 2, then for any initial vector zo ∈ Rn, the iterative
sequences zk generated by the SSOR methods I and II converge to the unique
solution z∗ of the LCP (1.1) and it holds that ρ(B−1

1 C1) < 1 and ρ(B−1
2 C2) < 1.

Then, let us present two preconditioned SSOR methods for the LCP (1.1)
with an M -matrix based on the general preconditioner P given in (1.2).

By (2.1), let us recall that Ã = PA, f̃ = Pf , and denote Ã = D̃ − L̃ −
Ũ . D̃, L̃ and Ũ are diagonal, strictly lower and upper triangular matrices,
respectively. In the following, two preconditioned SSOR methods (PSSOR) for
linear complementarity problems are presented as follows:

Method 2.11. (PSSOR I) :

(1) Choose an initial vector z0 ∈ Rn, a parameter w ∈ R+ and set k = 0;

(2) Calculate zk+1 = (zk − D̃−1[−wŨzk+1 + (w(2−w)Ã+wŨ)zk −w(2−
w)f̃ ])+;

(3) If zk+1 = zk, then stop, otherwise set k := k + 1 and return to Step
(2).

Method 2.12. (PSSOR II) :

(1) Choose an initial vector z0 ∈ Rn, a parameter w ∈ R+ and set k = 0;

(2) Calculate zk+1 = (zk − D̃−1[−wL̃zk+1 + (w(2−w)Ã+wL̃)zk −w(2−
w)f̃ ])+;

(3) If zk+1 = zk, then stop, otherwise set k := k + 1 and return to Step
(2).

3. Convergence analysis for PSSOR method

In this section, we will consider the convergence of the preconditioned SSOR
method for solving LCP (1.1). From Lemma 2.3, if the problem LCP (1.1) has
a nonzero solution, there is at least one index i such that fi > 0. Let us assume
that fi+1 > 0. From Lemma 2.6, we obtain:
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Theorem 3.1. Let Ã = PA ≡ [ãij ], f̃ = Pf ≡ f̃i. If fi+1 > 0, then LCP
(1.1) is equivalent to the linear complementarity problem

(3.1) x ≥ 0, r̃ = Ãx− f̃ ≥ 0, xT r̃ = 0.

Proof. Suppose that x is the solution to LCP (1.1). Because fi+1 > 0, from
Lemma 2.3 we have that xi+1 > 0 and

∑n
j=1 ai+1,jxj − fi+1 = 0.

Thus if i = n,

(3.2)

n∑
j=1

ãijxj − f̃i =

n∑
j=1

anjxj − fn =

n∑
j=1

aijxj − fi,

on the other hand if i 6= n, then

(3.3)

n∑
j=1

ãijxj − f̃i =

n∑
j=1

(aij − (αiai,i+1ai+1,j))xj − (fi − αiai,i+1fi+1)

=

n∑
j=1

(aijxj − fi)− (αiai,i+1)(

n∑
j=1

ai+1,jxj − fi+1)

=

n∑
j=1

aijxj − fi,

thus, x is the solution of the LCP (3.1).
Conversely suppose that x is the solution to LCP (3.1). Then by Theorem

3.1 we get that xi+1 > 0 and
∑n
j=1 ãi+1,jxj − f̃i+1 = 0. This is together with

(3.2) and (3.3) give
∑n
j=1 ai+1,jxj − fi+1 = 0. Thus for i = n we have

n∑
j=1

(aijxj − fi) =

n∑
j=1

anjxj − fn =

n∑
j=1

ãij − f̃i.

While for i 6= n, we can deduce that

n∑
j=1

(aijxj − fi) =

n∑
j=1

(ãij + αiai,i+1ai+1,j)xj −
n∑
j=1

(f̃i + αiai,i+1fi+1)

=

n∑
j=1

(ãijxj − f̃i) + αiai,i+1(

n∑
j=1

ai+1,jxj − fi+1)

=

n∑
j=1

ãij − f̃i.

Hence, x is the solution of the LCP (1.1). �

In what follows, we make the following assumptions:

(H1) 0 ≤ αi ≤ 1 for i = 1, 2, . . . , n;
(H2) 0 ≤ αiai,i+1ai+1,j for i = 1, 2, 3, . . . , n.
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For our purpose, we need the following equivalent conditions of nonsingular
M -matrices.

When A is an M -matrix, we assume that PA in (2.1) preserves the Z-matrix
character, i.e.,

ãij ≤ 0 for all i 6= j,

or equivalently,

(3.4) aij − αiai,i+1ai+1,j ≤ 0, i 6= j.

The following result holds for the matrix PA in (2.1) satisfying (3.4).

Theorem 3.2. Suppose that A = (aij) ∈ Rn×n is a nonsingular M -matrix.

If P is given by (1.2) such that (3.4) follow, then Ã = PA is a nonsingular
M -matrix.

Proof. Since A is a nonsingular M -matrix, from Lemma 2.4, there exists a
positive vector v > 0 so that Av > 0. Due to the fact that P ≥ 0 and the
diagonal entries of P satisfy pii = 1, then PAv > 0. Note that PA is a
Z-matrix. The result is directly derived from Lemma 2.4. �

By using the previous Theorem 3.1 and Theorem 3.2, we can establish the
following convergence theorem for the PSSOR methods for solving the LCP
(1.1).

Theorem 3.3. Let A = (aij) ∈ Rn×n be a nonsingular M -matrix. If P given
in (1.2) satisfies the conditions of Theorem 3.2, then for 0 < w < 2, the iterative
sequences of the PSSOR methods I and II converge to the unique solution x∗

of the LCP (1.1), where for the given vector f , its components fi+1 > 0.

Proof. Since A is a nonsingular M -matrix, by Theorem 3.2 Ã is still an M -
matrix, then Ã is also an H-matrix with positive diagonals. Hence, according to
Lemma 2.10, the iterative sequences of the PSSOR methods I and II converge
to the unique solution x∗ of the LCP (3.1), namely, by Theorem 3.1, the unique
solution x∗ of the LCP (1.1). �

4. Comparison results

In this subsection, we will consider comparison theorems, which show that
the PSSOR methods can increase the convergence of corresponding SSOR
methods for the LCPs of M -matrices. Let us consider the problem (1.1) with
the splitting

(4.1) A = D − L− U,

where D, L and U are diagonal, strictly lower and strictly upper triangular
parts of A, respectively. By (2.1) we assume that

(4.2) Ã = PA = (ãij), f̃ = Pf,
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where P satisfies Theorem 3.3 and

ãij =

{
aij − αiai,i+1ai+1,j , i 6= n, j = 1, 2, . . . n,
anj , i = n, j = 1, 2, . . . , n.

We split Ã in (4.2) as

(4.3) Ã = D̃ − L̃− Ũ ,

where D̃, L̃, and Ũ are diagonal, strictly lower and strictly upper triangular
parts of Ã, respectively. Apparently, it follows that D̃ =: (dii) with

dii =

{
aii − αiai,i+1ai+1,i, i 6= n,
ann, i = n.

L̃ =: (lij) with

lij =

{
aij − αiai,i+1ai+1,j , i 6= n, i > j,
anj , i = n,

and Ũ =: (uij) with

uij = aij − αiai,i+1ai+1,j , i < j,

respectively.
In what follows, we give some useful auxiliary results that are important for

us to provide comparison theorems.

Lemma 4.1. Let A = (aij) ∈ Rn×n be an M -matrix. Assume that A is

written as the splitting (4.1) and D, L, U , D̃, L̃, Ũ are given by (4.1)–(4.3).

Then D−1|L| ≤ D̃−1|L̃|, D−1|U | ≤ D̃−1|Ũ |.

Proof. Since Ã is an M -matrix, naturally, an H-matrix with positive diagonals,

(4.4)

{
aii − αiai,i+1ai+1,i > 0, i 6= n,
ann > 0, i = n.

Let us denote D−1|L| =: (l̄ij), D̃
−1|L̃| =: (l̃ij). Then we have

l̄ij =

{
1
aii
|aij |, i > j,

0, otherwise,

and

l̃ij =

{
1

aii−αiai,i+1ai+1,i
(|aij |+ αiai,i+1ai+1,j), i > j, i 6= n,

1
ann
|anj |, i = n.

On the one hand, from (4.4), pii ≥ 0 and the fact that A is an M -matrix, we
have

1

aii
≤ 1

aii − αiai,i+1ai+1,i
and |aij | ≤ (|aij |+ αiai,i+1ai+1,j).

Therefore, we obtain that l̄ij ≤ l̃ij , i, j ∈ N. In other words, D−1|L| ≤ D̃−1|L̃|.
Similarly, one can achieve that D−1|U | ≤ D̃−1|Ũ |. �
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Let

(4.5) B̃1 = I − wD̃−1|L̃|, C̃1 = |I − D̃−1[w(2− w)Ã+ wL̃]|,

(4.6) B̃2 = I − wD̃−1|Ũ |, C̃2 = |I − D̃−1[w(2− w)Ã+ wŨ ]|.

Lemma 4.2. Let A = (aij) ∈ Rn×n be an M -matrix. Suppose that Ã and f̃ are

given by (4.2) and B̃1, C̃1 and B̃2, C̃2 are defined by (4.5) and (4.6), respectively.
If 0 < w < 2, then for any initial vector x0 ∈ Rn, the iterative sequences
xkgenerated by the PSSOR methods I and II converge to the unique solution
x∗ of the LCP (1.1) and it follows that ρ(B̃−1

1 C̃1) < 1 and ρ(B̃−1
2 C̃2) < 1.

Proof. By (4.2), Ã is an H-matrix with positive diagonals. Hence, by Theo-
rem 3.3, for any initial vector x0 ∈ Rn, the iterative sequences xk of the PSSOR
methods I and II converge to the unique solution of the LCP(1.1), and from

Lemma 2.10 and the fact that Ã is an H-matrix with positive diagonal entries,
it follows that B̃−1

1 C̃1 < 1 and B̃−1
2 C̃2 < 1. �

Theorem 4.3. Assume that A is a nonsingular M -matrix and A and Ã have
the splitting (4.1) and (4.3), respectively. Let B1, C1 and B̃1, C̃1 be given as
in (2.2) and (4.5), respectively. Then for the matrices B−1

1 C1 for SSOR I and

B̃−1
1 C̃1 for PSSOR I with respect to the LCPs, we have

ρ(B̃−1
1 C̃1) ≤ ρ(B−1

1 C1) < 1.

Proof. By Lemma 2.10 and the fact that A is an M -matrix, for any initial
vector x0 ∈ Rn, the iterative sequence xk generated by SSOR I converges to
the unique solution x∗ of the LCP (1.1) and

(4.7) ρ(B−1
1 C1) < 1.

Analogously, by Lemma 4.2 and the fact that Ã is an H-matrix with positive
diagonals, for any initial vector y0 ∈ Rn, the iterative sequence yk generated
by PSSOR I converges to the unique solution x∗ of the LCP (1.1) and

(4.8) ρ(B̃−1
1 C̃1) < 1.

Let us now consider the result ρ(B̃−1
1 C̃1) ≤ ρ(B−1

1 C1). In terms of Lemma

4.1, we have that D−1|L| ≤ D̃−1|L̃, which is equivalent to

I − wD̃−1|L̃| ≤ I − wD−1|L|,

that is, B̃1 ≤ B1. Notice that B1 and B̃1 are M -matrices, this implies that
0 ≤ B−1

1 ≤ B̃−1
1 . Let us denote Q1 := B1−C1 and Q2 := B̃1−C̃1. Observe that

B1 and B̃1 are M -matrices and C1 and C̃1 are nonnegative, by Definition 2, it
holds that B1 − C1 and B̃1 − C̃1 are M -splittings of Q1 and Q2, respectively.
It means from (4.7), (4.8) and Lemma 2.2 that Q1 and Q2 are M -matrices.
Therefore, Q−1

1 ≥ 0 and Q−1
2 ≥ 0, which show by Lemma 2.2 that Q1 and Q2

are monotone. From Definition 2 and the fact that an M -splitting is an regular
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splitting, it can be derived that B1 − C1 and B̃1 − C̃1 are regular splittings of
the monotone matrices Q1 and Q2, respectively.

If A is an irreducible matrix, taking into account that

B−1
1 C1 = (I − wD−1|L|)−1|I −D−1[w(2− w)A+ wL]|,

this implies that the matrix B−1
1 C1 is a nonnegative irreducible matrix. Thus,

by means of Perron-Frobenius theorem (see Theorem 2.7 of [4]), B−1
1 C1 has

a positive Perron vector. By Lemma 2.5, as a result, we have ρ(B̃−1
1 C̃1) ≤

ρ(B−1
1 C1).

If A is a reducible matrix, then by Lemma 2.7, for sufficiently small ε > 0
the matrix A(ε) is an irreducible M -matrix and by the above proof one can see
that

ρ(B̃−1
1 C̃1) = lim

ε→0+
ρ(B̃−1

1 C̃1)(ε) ≤ lim
ε→0+

ρ(B−1
1 C1)(ε) = ρ(B−1

1 C1).

This completes the proof. �

Similarly, we can obtain the following corollary.

Corollary 4.4. Assume that A is a nonsingular M -matrix and A and Ã have
the splitting (4.1) and (4.2), respectively. Let B2, C2 and B̃2, C̃2 be given as in
(2.3) and (4.6), respectively. Then for the matrices B−1

2 C2 for SSORII and

B̃−1
2 C̃2 for PSSORII with respect to the LCP (1.1), it holds that ρ(B̃−1

2 C̃2) ≤
ρ(B−1

2 C2) < 1.

5. Numerical examples

In this section, two examples are given for verifying the theoretical result.

Example 5.1. The coefficient matrix A in Equation (1.1) is given by

A =

(
I −Q U
L I −R

)
,

where A is a irreducible M -matrix, Q = (qij) ∈ Rp×p, R = (rij) ∈ Rq×q,
L = (lij) ∈ Rq×p, and U = (uij) ∈ Rp×q with

qii =
1

10(i+ 1)
, 1 ≤ i ≤ p,

qij =
1

30
− 1

30j + i
, 1 ≤ i < j ≤ p,

qij =
1

30
− 1

30(i− j + 1) + i
, 1 ≤ j < i ≤ p,

rii =
1

10(p+ i+ 1)
, 1 ≤ i ≤ q,

rij =
1

30
− 1

30(p+ j) + p+ i
, 1 ≤ i < j ≤ q,
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rij =
1

30
− 1

30(i− j + 1) + p+ i
, 1 ≤ j < i ≤ q,

lij =
1

30(p+ i− j + 1) + p+ i
− 1

30
, 1 ≤ i ≤ q, 1 ≤ j ≤ p,

uij =
1

30(p+ j) + i
− 1

30
, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Table 1 and Table 2 list ρ(B−1C) and ρ(B̃−1C̃) with different α and ω for
Example 5.1.

Table 1. ρ(B−1C) and ρ(B̃−1C̃) with α = 2/3 and ω = 1.1
for Example 5.1

n SSOR I PSSOR I SSOR II PSSOR II
5 0.0526 0.0435 0.0502 0.0477
10 0.1460 0.1307 0.1377 0.1343
15 0.2774 0.2602 0.2654 0.2612
20 0.4514 0.4358 0.4399 0.4347
25 0.6753 0.6648 0.6700 0.6637
30 0.9584 0.9567 0.9666 0.9589

Table 2. ρ(B−1C) and ρ(B̃−1C̃) with α = 2/3 and ω = 0.5
for Example 5.1

n SSOR I PSSOR I SSOR II PSSOR II
5 0.3030 0.2953 0.3020 0.2970
10 0.3937 0.3838 0.3907 0.3851
15 0.4981 0.4885 0.4940 0.4888
20 0.6152 0.6070 0.6110 0.6065
25 0.7453 0.7394 0.7418 0.7387
30 0.8893 0.8865 0.8875 0.8860

Example 5.2. Consider the LCP(1.1) with the system matrix A ∈ Rn×n and
the vector f ∈ Rn,

A =



S −I −I

S −I
. . .

S
. . . −I
. . . −I

S


∈ Rn×n, f =



−1
1
−1
...

(−1)n−1

(−1)n


∈ Rn,
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where S = tridiag(−1, 8,−1) ∈ Rn̄×n̄ and I ∈ Rn̄×n̄ is the identity matrix
and n̄2 = n. It is easy to check that A is an M -matrix. So, the LCP(1.1) has
a unique solution. Taking into account that f2 > 0, f4 > 0, . . . , hence km ∈
{2, 4, 6, . . .}. For this problem, we take the initial vector z0 = (5, 5, . . . , 5)T .
Let the termination criterion for the presented methods be ε(zt) := ‖min(Azt+
q, zt)‖∞ < 10−6.

Table 3 list IT and CPU with different n and ω for Example 5.2.

Table 3. IT, CPU and ρ with different n and ω for Example 5.2

PSSOR method I SSOR method I PSSOR method II SSOR method II
IT CPU ρ IT CPU ρ IT CPU ρ IT CPU ρ

n = 100
ω = 0.01 1190 0.3432 0.9829 1204 0.4056 0.9849 1147 0.3120 0.9829 1162 0.3432 0.9849
ω = 0.1 117 0.0624 0.8359 118 0.1092 0.8538 107 0.0624 0.8355 107 0.0624 0.8538
ω = 0.5 22 0.0312 0.3334 22 0.0468 0.3885 58 0.0624 0.3253 56 0.0312 0.3885
ω = 1.0 12 0.0312 0.0399 12 0.0468 0.0575 −− −− 0.0130 −− −− 0.0575
ω = 1.2 13 0.0624 0.1352 14 0.0468 0.2036 −− −− 0.1204 −− −− 0.2036
n = 400
ω = 0.01 1229 4.1184 0.9830 1241 4.9920 0.9850 1154 3.8064 0.9830 1165 3.8688 0.9850
ω = 0.1 121 0.5772 0.8371 123 0.7176 0.8551 126 0.4992 0.8367 125 0.5304 0.8551
ω = 0.5 24 0.2184 0.3375 24 0.3120 0.3931 −− −− 0.3287 −− −− 0.3931
ω = 1.0 15 0.1872 0.0433 15 0.2184 0.0611 −− −− 0.0140 −− −− 0.0611
ω = 1.2 16 0.2184 0.1403 16 0.2652 0.2099 −− −− 0.1244 −− −− 0.2099
n = 900
ω = 0.01 1229 27.8929 0.9831 1242 31.7774 0.9850 1157 24.6794 0.9831 1165 25.1317 0.9850
ω = 0.1 121 3.8532 0.8374 123 4.3836 0.8554 164 4.6644 0.8369 162 4.5396 0.8554
ω = 0.5 24 1.8252 0.3383 24 1.8720 0.3940 −− −− 0.3294 −− −− 0.3940
ω = 1.0 15 1.5912 0.0444 15 1.7004 0.0620 −− −− 0.0142 −− −− 0.0619
ω = 1.2 16 1.7628 0.1414 17 1.7784 0.2112 −− −− 0.1252 −− −− 0.2112

Table 4 list IT with different n and ω for Example 5.2.

Table 4

n PSSOR methodI ˜PSSOR methodI SSOR methodI
n = 100
ω = 0.01 1190 1120 1204
ω = 0.1 117 109 118
ω = 0.5 22 20 22
ω = 1.0 12 10 12
ω = 1.2 13 12 14
n = 400
ω = 0.01 1229 1214 1241
ω = 0.1 121 119 123
ω = 0.5 24 22 24
ω = 1.0 15 12 15
ω = 1.2 16 14 16
n = 900
ω = 0.01 1229 1244 1242
ω = 0.1 121 123 123
ω = 0.5 24 24 24
ω = 1.0 15 14 15
ω = 1.2 16 16 17
n = 1600
ω = 0.01 1229 1250 1242
ω = 0.1 121 124 123
ω = 0.5 24 24 24
ω = 1.0 15 15 15
ω = 1.2 16 16 17

In Table 1, 2, we compare the spectral radii for two PSSOR methods and the
SSOR method with several values of n, α and ω. In Table 3, we compare the
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number of iterations (IT), the CPU time (CPU) and ρ (Spectral radius) for two
PSSOR methods and the SSOR method [9] with several values of n and ω, when
the coefficient matrix is a large sparse matrix (‘−−’ indicates that there is no
corresponding result when the number of iterations is less than 300 in matlab
calculation). It is easy to see that two PSSOR method has faster convergence
rate and fewer iteration steps than two SSOR method for the LCP(1.1), which
confirm our theoretical results. In addition, we also compare the number of
iterations (IT) for the SSOR method [9], Dai et al.’s method ( ˜PSSOR) [7] and
PSSOR methods with several values of n and ω in Table 4, numerical examples
demonstrate that the proposed method has fewer iterations and convergence
speed is faster when the size of the matrix is larger and w is smaller.

6. Concluding remarks

In this paper, for the LCPs with an M -matrix A and the vector f , we first
present a preconditioner P by using the number of positive sign of the com-
ponents in f , and prove that the original LCP (1.1) is equivalent to the LCP
(3.1). Then, on the basis of the preconditioner P , two PSSOR methods for
linear complementarity problem are proposed and the convergence analysis is
provided. Also we achieve comparison theorems on the PSSOR methods for
the linear complementarity problem, which show that the PSSOR methods im-
prove considerably the convergence rate and fewer iteration steps of the original
SSOR methods for solving the LCP (1.1). Numerical examples tested show the
prominent efficiency of the proposed methods. How to extend this technique
to other methods for solving the LCPs is the content of future research.
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