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PRIME-PRODUCING POLYNOMIALS RELATED TO CLASS

NUMBER ONE PROBLEM OF NUMBER FIELDS

Jun Ho Lee

Abstract. First, we recall the results for prime-producing polynomials

related to class number one problem of quadratic fields. Next, we give
the relation between prime-producing cubic polynomials and class number

one problem of the simplest cubic fields and then present the conjecture
for the relations. Finally, we numerically compare the ratios producing

prime values for several polynomials in some interval.

1. Introduction

Euler gave the famous prime-producing polynomial f(x) = x2 + x + 41
which gives prime values for all integers x = 0, 1, . . . , 39. Euler also discovered
that for q = 2, 3, 5, 11, 17, and 41, the polynomial f(x) = x2 + x + q gives
prime values for all integers x = 0, 1, . . . , q − 2. Rabinowitsch [17] proved that
for a prime number q, the class number of Q(

√
1− 4q) is equal to 1 if and

only if k2 + k + q is prime for every k = 0, 1, . . . , q − 2. For real quadratic
fields, many authors [4, 5, 15, 25] considered the connection between prime-
producing polynomials and class number one problem. Many authors (cf. [9,
10, 16, 18]) also observed prime-producing cubic polynomials. There is a cubic
polynomial of two variables relating class number one problem of the simplest
cubic fields (cf. [9, 10]). But we could not find any results giving the relation
between prime-producing cubic polynomials of one variable and class number
one problem of associated cubic fields. The aim of this paper is to give the
relation between prime-producing cubic polynomials of one variable and class
number one problem of associated cubic fields. First, we recall known results
for some quadratic fields and then give our results for the simplest cubic fields.
Now, we remind the result for prime-producing polynomials related to class
number one problem of imaginary quadratic fields.
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Theorem 1.1. Let q be a prime. We put fq(x) = x2 + x + q and Kq =
Q(

√
1− 4q). Then the following conditions are equivalent:

(1) q = 2, 3, 5, 11, 17, 41.
(2) fq(k) is a prime for every k = 0, 1, . . . , q − 2.
(3) The class number of Kq is one.

We note that Rabinowitsch [17] proved the equivalence of (1) and (2). Heeg-
ner [8] attempted to determine imaginary quadratic fields with class number
one. But, there was a gap in Heegner’s proof. After that, Stark [22] filled the
gap and proved that there exist exactly nine imaginary quadratic fields with
class number one. That makes it possible to observe the relation of (1) and
(3).

Next, we introduce similar results for real quadratic fields.

Theorem 1.2. Let q be a positive integer. We put d = 4q2 + 1 and fd(x) =

−x2+x+ d−1
4 . Let Kd = Q(

√
d). Then the following conditions are equivalent:

(1) The class number of Kd is one.
(2) Every prime q0 < q remains inert in Kd/Q.
(3) fd(k) is a prime for every integer k such that 2 ≤ k ≤ q.

Theorem 1.3. Let q be an odd positive integer. We put d = q2 + 4 and
fd(x) = −x2 + x + d−1

4 . Let Kd = Q(
√
d). Then the following conditions are

equivalent:

(1) The class number of Kd is one.
(2) Every prime q0 < q remains inert in Kd/Q.
(3) fd(k) is a prime for every integer k such that 1 ≤ k ≤ q−1

2 .

We say that the form d = 4q2 + 1 (resp. d = q2 + 4) is Chowla’s type [6]
(resp. Yokoi’s type [25]) because Chowla (resp. Yokoi) first observed this kinds
of real quadratic fields in [6,25]. Sasaki [20] proved the equivalence relation of
(1) and (3) by using continued fraction expansions. On the other hand, Byeon
and Kim [4] gave analytic proof for equivalence relation of (1) and (3). Yokoi
[25] proved the equivalence relation of (1), (2), and (3). Biró [1, 2] determined
this kinds of real quadratic fields with class number one. In fact, there exist
exactly six real quadratic fields of Chowla’s type (resp. Yokoi’s type) with class
number one, in that case, q is 1, 2, 3, 5, 7, and 13 (resp. q is 1, 3, 5, 7, 13, and
17).

Remark 1. Before Biró’s seminal work, there were not any results for determi-
nation of some real quadratic fields with class number one. There existed only
the results for a characterization of real quadratic fields such as Theorems 1.2
and 1.3. Therefore, Biró’s results [1, 2] are considerably meaningful.

2. The simplest cubic fields

Now, we are interested in prime-producing cubic polynomials related to class
number one problem. There exist few results giving the relations as Theorems
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1.2 and 1.3 in cubic fields compared to quadratic fields. First, we note that
every cyclic cubic field can be obtained by adjoining toQ a root of an irreducible
polynomial

Fm(x) = x3 +mx2 − (m+ 3)x+ 1,

where m runs over the set of rational numbers (cf. [11]). The discriminant of
the polynomial Fm(x) is D2

m, where Dm = m2+3m+9. Let αm be the negative
root of Fm(x). Then Km = Q(αm) is a cyclic cubic field which is called the
simplest cubic field. The terminology “simplest cubic field” came from a work
of Shanks [21]. He studied the arithmetic of a family of cyclic cubic fields in the
case that Dm = m2+3m+9 is a prime, where m is an integer. The notion was
extended by Washington [23] in which he studied the arithmetic of a family of
cyclic cubic fields which corresponds to m ∈ Z, m ̸≡ 3 (mod 9). Let m ≥ −1
be a rational integer such that m ̸≡ 3 (mod 9) and m2 + 3m+ 9 is square-free
or 9 times a square-free integer. Then we have DKm

= D2
m = (m2 + 3m+ 9)2

and OKm
= Z[αm], where DKm

is the discriminant of Km and OKm
is the ring

of integers of Km [23].
We note that there are infinitely many positive integers m such that m2 +

3m + 9 is square-free [7]. Moreover, we know that {1, αm, α′
m} is an integral

basis of OKm
, where α′

m is an algebraic conjugate of αm. Note that letting
−Fm(−x) = Gm(x) = x3−mx2−(m+3)x−1, the polynomial Gm(x) generates
the same field Km.

In [13], Lettl obtained a lower bound of residues at s = 1 of Dedekind zeta
functions attached to cyclic cubic fields and, by applying his lower bound to the
simplest cubic fields with prime conductors, has shown that there are exactly
seven simplest cubic fields of class number one. That is, m = −1, 1, 2, 4, 7, 8, 10
gives all the values of m such that the class number of the simplest cubic field
is one. Later, Louboutin [14] improved considerably the result of Lettl.

Kim and Hwang [9] applied Siegel’s formula for values of the zeta function
of a totally real algebraic number field at negative odd integers to the simplest
cubic fields. By using the result, they found the following prime-producing
polynomial with two variables c, t and one parameter m related to class number
one:

σm(c, t) = (t2+(c−1)t)m2+(−2t3+(−3c+6)t2+(−c2+3c)t

+(−c2+3c−2))m+(−3t3+(3c2−9c+9)t+(c3−6c2+9c−3)).

Combining these results, we can give the following equivalence relations.

Theorem 2.1. Let m ≥ 1 be an integer such that m ̸≡ 3 (mod 9) and assume
m2 + 3m + 9 is square-free or 9 times a square-free integer. Let Km be the
simplest cubic field corresponding to m and hm the class number of Km. Then
the following conditions are equivalent:

(1) hm is one.
(2) m = 1, 2, 4, 7, 8, 10.
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(3) σm(c, t) is a prime for any integers c and t in the range 1 ≤ c ≤
m+ 3− 3t and 1 ≤ t ≤ m+2

3 .

Lettl [13] explicitly determined the simplest cubic fields with class number
one by using the lower bounds for L(1, χ) · L(1, χ̄) for certain cubic character.
On the other hand, the equivalence relation of (1) and (3) is proved in Theorem
3.1 of [9]. The cubic polynomial of two variables σm(c, t) comes from the
norm function of some principal ideal. The principal ideals give one to one
correspondence with the Siegel Lattice. The range in (3) of Theorem 2.1 implies
the representatives of the Siegel Lattice (cf. Theorem 4.4 of [10]).

In particular, by substituting t = 1 for σm(c, t), we have a necessary condi-
tion for hm to be one.

Corollary 2.2. If hm is one, then

σm(k, 1) = k3 − (2m+ 3)k2 +m(m+ 3)k + 2m+ 3

is a prime for every k = 1, 2, . . . ,m.

If we fix one variable in the cubic polynomial σm(c, t) of two variables, the
polynomial σm(c, t) is closely related to the Fm(x). In fact, since Gm(x) =
(x− 1)(x+2)(x−m− 1)− (2m+3) = −σm(m+1−x, 1), Corollary 2.2 means
that if hm is one, then −Gm(k) is a prime for every k = 1, 2, . . . ,m. Noting
that σm(x, 1) = x(x −m)(x −m − 3) + 2m + 3, we have σm(x +m + 1, 1) =
(x+1)(x−2)(x+m+1)+2m+3 = Fm(x) and σm(m, 1) = σm(0, 1) = 2m+3.
Therefore, we have the following result.

Corollary 2.3. If hm is one, then Fm(k) is a prime for every integer k in the
range −m− 1 ≤ k ≤ −1.

We will try to give new class number one criterion for the simplest cubic
fields by observing that a polynomial Fm(x) producing relatively many primes
is related to class number one problem of Km. Now, we give a necessary
condition for the class number of Km to be one.

Proposition 2.4. Suppose hm is one. Then every prime p less than 2m + 3
remains inert in Km/Q.

Proof. Suppose hm is one and a prime p is less than 2m + 3. If a prime p
does not remain inert in Km/Q, since Km is a cyclic cubic field, (p) = P3 and
N(P) = p < 2m + 3, or (p) = P1P2P3 and N(P1) = N(P2) = N(P3) = p <
2m + 3. Here, P, P1,P2, P3 are prime ideals in OKm and N(P) is the norm
of ideal P . By assumption, P,P1,P2,P3 are principal ideals. But, they could
not be principal by the result of [12]: For all γ ∈ OK , |NKm/Q(γ)| ≥ 2m + 3.
It completes the proof. □

From the above results, it is reasonable to conjecture similar equivalent state-
ments as Theorems 1.2 and 1.3 giving the relation between a prime-producing
cubic polynomial and class number one problem of the simplest cubic field.
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Conjecture 2.5. Let m ≥ 1 be an integer such that m ̸≡ 3 (mod 9) and
assume m2 +3m+9 is square-free or 9 times a square-free integer. Let Km be
the simplest cubic field corresponding to m. Then the following conditions are
equivalent:

(1) hm is one.
(2) Every prime p less than 2m+ 3 remains inert in Km/Q.
(3) For every prime p less than 2m+3, the congruence Fm(x) ≡ 0 (mod p)

has no solution for x.
(4) Fm(k) is a prime for every integer k in the range −m− 1 ≤ k ≤ −1.

Remark 2. Suppose 2m+ 3 is a prime. Minkowski’s constant for the simplest
cubic field is 2

9 (m
2+3m+9) (cf. p. 166 of [19]). That is, every class of fractional

ideals contains an ideal I ⊂ OKm with N(I) ≤ 2
9 (m

2 + 3m + 9). Applying
Minkowski’s constant for the simplest cubic field, it is easy to check that if for
a prime p ≤ 2

9 (m
2 +3m+9), every prime ideal dividing a principal ideal ⟨p⟩ is

principal, then hm is one. But, in order to show that hm is one, Minkowski’s
constant for the simplest cubic field is not useful because a prime p = 2m+3 is
not inert. In fact, since Fm(2) = 2m+3, a prime p = 2m+3 is totally ramified
or splits completely by Dedekind’s theorem (cf. p. 196, Theorem 2 of [19]).
Moreover, if 2m+ 3 is a prime, then it is well known that a prime p = 2m+ 3
splits completely (cf. Lemma 2.1 of [3]).

By Proposition 2.4, (1) implies (2). Since OKm = Z[αm], (2) and (3) are
equivalent by Dedekind’s theorem. On the other hand, (1) implies (4) by
Corollary 2.3. In fact, if m is 1, 2, 4, 7, 8, 10, then we easily see that fm(k) is a
prime for every integer in the range −m − 1 ≤ k ≤ m + 1 except that k = 0
and k = 1, in that case, Fm(0) = 1 and Fm(1) = −1. By using GP/Pari
program, we numerically checked the statements of Conjecture 2.5 in the range
1 ≤ m ≤ 2 · 106 and also observed m satisfying the condition that Fm(k) is a
prime for every integer k in the range −m − 1 ≤ k ≤ −1, in that case, m is
1,2,4,7,8,10. It took about 4 days with 2 high-performance laptops to verify
the computation.

If hm is one, it is well known that 2m + 3 is a prime [3, 9]. Therefore, we
have the following result.

Proposition 2.6. Suppose hm is one. If Fm(k) is a prime for every integer
k in the range −m − 1 ≤ k ≤ m + 1 except that k = 0 and k = 1, then every
prime p less than 2m+ 3 remains inert in Km/Q.

Proof. Note that if hm is one, then 2m+ 3 is a prime. It is easy to check that
Fm(k) ≥ 2m+ 3 for every integer k in the range −m− 1 ≤ k ≤ m+ 1 except
that k = 0 and k = 1. Since p−1

2 < m + 1, Fm(k) is a prime for every integer

k in the range −p−1
2 ≤ k ≤ p−1

2 by assumption. That means that for a prime
p less than 2m + 3, p does not divide Fm(k) for every integer k in the range
−p−1

2 ≤ k ≤ p−1
2 . That is, the congruence Fm(x) ≡ 0 (mod p) has no solution

for x. It completes the proof. □
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Remark 3. If we admit Fm(k) to have negative values, we can extend the range
of k up to −2m. That means that if m is 1, 2, 4, 7, 8, 10, then |Fm(k)| is a prime
for every integer k in the range −2m ≤ k ≤ m+1 except that k = 0 and k = 1.

Remark 4. It is well known for explicit lower bounds for class numbers of cyclic
cubic fields [13, 14]. Therefore, for parametrized families of cyclic cubic fields
with known regulators, it is not difficult to determine cyclic cubic fields with
class number one. In this paper, we more focus on prime-producing cubic
polynomials to class number one problem of cubic fields than determination of
cubic fields with class number one.

3. Prime-producing polynomials

One of fascinating problems for producing prime values is whether we can
discover a polynomial f(x) with integer coefficients that produces infinitely
many prime values. Euclid proved that a polynomial of the form f(x) = x
produces infinitely many primes. Dirchlet’s theorem on primes in arithmetic
progressions extends Euclid’s theorem to a polynomial of the form f(x) =
ax+b, where a and b are relatively prime integers and a > 0. Another problem
for producing primes is to concern polynomial producing consecutive prime
values for all integers x in some interval. Euler discovered that the polynomial
x2 + x + 41 produces 40 distinct prime values for all integers x = 0, 1, . . . , 39.
Theorem 1.2 says that there exist exactly six polynomials of the form of the
polynomial x2+x+ q producing prime values for all integers x = 0, 1, . . . , q−2
and the largest prime q satisfying that is 41. If we admit that f(x) has negative
values and produced primes need not necessarily be distinct, we can extend the
range of x producing primes in f(x). For example, the transformed polynomial
(x−40)2+(x−40)+41 of the polynomial x2+x+41 produces prime values for
all integers x = 0, 1, . . . , 79. In this case, produced primes are not necessarily
distinct. Ruby discovered that for the polynomial f(x) = 36x2 − 810 + 2753,
|f(x)| generates distinct prime values for all integers x in the range [−33, 11]
(cf. [18]).

On the other hand, one can ask if we can find a polynomial f(x) producing as
possible as many primes in some interval. Table 1 gives some quadratic, cubic
polynomials that generate (possibly in absolute value) only primes for the first
few nonnegative values (cf. [24]). The second column of Table 1 indicates the
natural number N where known “good” prime-producing polynomials produces
only prime in [0, N ] and the third column implies the number of distinct primes
that the polynomials produce in the range x ∈ [0, N ]. Furthermore, the fourth
column of Table 1 lists the percentage P1 that absolute values of the given
polynomials in the range [0, 2000] become prime values and the fifth column
implies class number h of number fields obtained by adjoining Q to a root of
the polynomial.

Finally, we compare the ratio of the famous Euler polynomial and a cubic
polynomial relating the simplest cubic field produce prime values in the range
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Table 1.

Polynomials N distinct primes P1 h
−66x3 + 3845x2 − 60897x+ 251831 45 46 0.357821 1

36x2 − 810x+ 2753 44 45 0.490755 1
3x3 − 183x2 + 3318x− 18757 46 43 0.361819 2

47x2 − 1701x+ 10181 42 43 0.456272 1
103x2 − 4707x+ 50383 42 43 0.463268 5

x2 + x+ 41 39 40 0.510745 1

Table 2.

N P2 P3

100 0.861386 0.594059
1000 0.581419 0.365634
2000 0.510745 0.336332
5000 0.45231 0.309338
10000 0.414859 0.286171
20000 0.380981 0.260937

x ∈ [0, N ]. The percentage P2 (resp. P3) indicates that x
2 + x+41 (resp. x3 +

10x2 − 13x+ 1) produces prime values in the range x ∈ [0, N ] in Table 2.

Remark 5. There exist numerical results for many prime-producing polyno-
mials related to class number one problem [16, 18]. But, there exist few re-
sults giving the relation between prime-producing cubic polynomials and class
number one problem of associated cubic fields. In that sense, observation of
Conjecture 2.5 will be meaningful.
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