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A METHOD FOR COMPUTING UPPER BOUNDS
ON THE SIZE OF A MAXIMUM CLIQUE

KooncHaN KiM

ABSTRACT. Maximum clique problem is to find a maximum clique
(largest in size) in an undirected graph G. We present a method
that computes either a maximum clique or an upper bound for the
size of a maximum clique in G. We show that this method performs
well on certain class of graphs and discuss the application of this
method in a branch and bound algorithm for solving maximum
clique problem, whose efficiency is depended on the computation of
good upper bounds.

1. Introduction

We denote an undirected graph without loops or multiple edges by
G = (V,E), where V = {v1,v2,...,vn} is the set of vertices and E C
V x V is the set of edges. A cligue of a graph G is a set of vertices, any
two of which are adjacent, i.e., a complete subgraph of G. A maximal
clique is a clique that is not a subset of any other clique. In mazimum
clique problem, one desires to obtain a maximum clique; a clique with the
maximum cardinality, which is denoted by w(G). The maximum clique
problem is computationally equivalent to the mazimum independent (or
stable) set problem.

The maximum clique problem is difficult to solve and is known as
NP-hard(see [4]), and hence no polynomial time algorithm is expected
to be found. Most algorithms designed and developed for the maximum
clique problem belong to one of the three categories: 1) enumerative
algorithms that enumerate all of the cliques of a given graph, 2) implicit
enumerative algorithms whose goal is to find one maximum clique, and
3) heuristics which compute an approximate solution to the maximum
clique problem.
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The most practical and commonly used algorithms for solving maxi-
mum clique problem are the branch and bound algorithms which belong
to the categories of implicit enumerative algorithms. The key issues(see
[9]) in a branch and bound algorithm are (1) how to find a good lower
bound(a clique of large size), (2) how to find a good upper bound on
the size of maximum clique for each subgraph generated, and (3) how
to branch(selecting a vertex in a tree to form a new subgraph).

In the branch and bound algorithms of Garraghan and Pardalos [5]
and Pardalos and Rodgers [8], the size of a given subgraph is used as an
upper bound for the size of a maximum clique in order to prune the ‘un-
profitable’ vertices. In recently proposed branch and bound algorithms
of Balas and Xue [1], Ostergard [7] and Wood [11], for example, the
vertex coloring heuristic is used to obtain an upper bound for the size of
a maximum clique for each subgraph generated. Here we state a vertex
coloring heuristic described in Biggs [2] for later reference.

COLOR: To determine a color class Cy, set C, = 0 and

initialize S to be the set of uncolored vertices. While S #

@, assign color k to a vertex v € S with maximum degree

in G, and set Cy := CxU{v} and S := (S\ {v}) \ Ng(v).
Note that if a graph G can be k-colored, i.e., if V is partitioned into
k color classes (Cy,C2,...,Cy), then k is an upper bound for w(G),
and consequently k& becomes an upper bound for the size of maximum
clique of G. Results on some theoretical upper bounds on the size of a
maximum clique can be found in [3, 6].

The purpose of this paper is to introduce a method that computes
either a maximum clique or an upper bound on the size of a maximum
clique of a graph G and to study its characteristics. We discuss the
application of this method in a branch and bound algorithm for solving
maximum clique problem. Section 2 gives a condition for a number to
be an upper bound, and Section 3 presents a criterion for the recog-
nition of a maximum clique in a graph. Section 4 describes a method
and illustrates the characteristics of this method on small representative
examples. Section 5 concludes the paper.

2. An upper bound condition
Let A(G) = (a;j) be the adjacency matrix for the graph G = (V, E),

where a;; = 1 if (v;,v;) € E is an edge of G and a;; = 0 if (v;,v;) € E
fori,7 = 1,2,...,n. We assume that E # (; that is, G does not consist
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Kpn| tri(v) [deg(v)

K, 0 0
Ky 0 1
K3 1 2
K, 3 3
K 6 4
Kg 10 5
K, (7”_‘2)2_(7221_) m—1

Table 1. Number of triangles and degree formed
by each vertex v in K,

of only the isolated vertices, which implies that w(G) > 2. We denote
AF(G) the kth power of A(G) under matrix multiplication. Then the
(i, j)-entry of A¥(G) gives the number of walks of length k from vertex v;
to v; in G. If we let ¢t be the vector of the diagonal elements of A3(G)/2,
denoted by t = diag(A3(G)/2) = (t1,ts,...,t,), then the ith element
t; of t represents one half of the number of walks of length 3 from the
vertex v; to itself. In other words, t; represents the number of triangles
formed by the vertex v;, without counting the same triangle twice. We
denote this by tri(v;). We also denote the vector of the degrees of the
vertices in G by d = (dy,dy, . ..,d,), where d; = deg(v;); the number of
edges incident to v;.

For example, let G be the kite( K4\ {e}), the complete graph of order
4 with an edge deleted. Thend = (232 3) and t = A3(G)/2 = (1212),
in which v; and vs are the vertices with degree 2 and vs and vy are the
vertices with degree 3.

In Table 1, the number of triangles and degree formed by each vertex
v of the complete graph K,, are shown. Note that since any pair of
vertices in K,, is adjacent, the number of triangles formed by a vertex
v in K,,, without counting the same triangle twice, is the same as the
number of ways of selecting two edges from the set of m — 1 edges that
are incident to v, which is the combination C(m — 1,2) and is equal to
(m—2)(m—1)/2.

From the Table 1, it can be easily seen that if a given graph G contains
a clique of size m(i.e., a subgraph K,,), then there must exist at least m
vertices in GG such that the number of triangles formed by each of these
vertices is at least (m — 2)(m — 1)/2.
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An integer m > 2 is said to satisfy upper bound condition if it satisfies
the following two conditions simultaneously:

1. G has a set of at least m vertices each of which forms at least
(m — 2)(m — 1)/2 triangles

2. G does not have a set of m+1 vertices each of which forms greater
than or equal to (m — 1)(m)/2 triangles.

If there exists an integer m that satisfies the upper bound condition,
then m becomes an upper bound for the size of a maximum clique of the
graph G, which we denote by p = m. That is, w(G) < p.

For example, in the graph kite(G = K4\ {e}), there are at least m = 3
vertices each of which forms at least (m—2)(m—1)/2 = 1 triangles(recall
that t = (1 2 1 2)). However, there does not exist a set of m + 1 = 4
vertices each of which has greater than or equal to (m — 1)(m)/2 = 3
triangles. Thus, m = 3 satisfies the upper bound condition and hence
© = 3 is an upper bound for the size of a maximum clique of the graph
kite.

3. A criterion for the recognition of a maximum clique

Let v € V and S C V for an undirected graph G = (V,E). We
denote Ng(v) the set of vertices adjacent to v and G(S) the subgraph
of G induced by S. When there is no possibility of confusion, we will
use the same symbol to denote both the vertex set of a clique and the
clique itself.

Consider a complete graph K,,. Let v be a vertex of K,,. Then from
Table 1, tri(v) = (m — 2)(m — 1)/2 and deg(v) = m — 1. Conversely, we
have the following result:

LEMMA 1. Let G = (V, E) be an undirected graph with E # (. If
there exists a vertex v of G and an integer m > 2 such that tri(v) =
(m —2)(m —1)/2 and deg(v) = m — 1, then C = Ng(v) U {v} forms a
maximal clique of G.

PROOF. Suppose there exists a vertex v of G and an m > 2 such that
tri(v) = (m — 2)(m — 1)/2 and deg(v) = m — 1. Since deg(v) = m — 1,
there are m — 1 vertices adjacent to v. Let C = Ng(v) U {v}. We show
that C' is a clique, a complete subgraph K, of G. Let u be an arbitrary
vertex in Ng(v). To show C is a clique, we must show that u is adjacent
to all of the other vertices in Ng(v). But this result follows immediately
since the cardinality of Ng(v) is m — 1 and the maximum number of
triangles that the vertex v can form using the vertex u(i.e., edge (v,u))
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and one of the vertices in Ng(v) is m — 2; if there exists a vertex w in
Ng(v) such that u and w are not adjacent, then tri(v) would not equal
to (m — 2)(m — 1)/2, which is a contradiction. Also, it can be easily
seen that no other clique could contain C as a proper subset(as a proper
subgraph), so C' is a maximal clique of G. O

Next we present a criterion for the recognition of a maximum clique
in a graph G.

PROPOSITION 2. Let G = (V, E) be an undirected graph with E # §.
Suppose that there exists a vertex v in G and an integer m > 2 such that
tri(v) = (m — 2)(m — 1)/2, deg(v) = m — 1, and m satisfies the upper
bound condition. Then the set C = Ng(v) U {v} forms a maximum
clique of G and w(G) = m.

PrOOF. By Lemma 1, the first two hypothesis implies that C is a
maximal clique with size m. Since m satisfies the upper bound condition,
m is an upper bound for the maximum clique of G. Consequently, C
must be a maximum clique of G and w(G) = m. O

REMARK. Proposition 2 implies that if there exists a vertex v such
that deg(v) > m — 1 but tri(v) = (m — 2)(m — 1)/2, then v can not
belong to a clique of size m.

In the rest of this paper when we say ‘the criterion’ we mean the
criterion given in Proposition 2.

ExXAMPLE 1. Consider the graph G given in Figure 1.

Figure 1. G
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Computing the number of triangles and degree formed by each vertex
in G, we obtain, respectively,

t = (23941156 5)
d = (33647454).

Since there exists at least four vertices(all except one vertex) each of
which has at least three triangles and no set of five vertices exists with
each vertex forming greater than or equal to six triangles (only three
vertices have greater than or equal to six triangles), it follows that p = 4
is an upper bound for the size of a maximum clique in G. Furthermore,
the criterion is satisfied at vo(tri(vy) = 3 and deg(va) = 3). Thus,
w(G) = u =4 and C = {v2, vs3,vs, v}, which is equal to Ng(vs) U {v2},
forms a maximum clique of G.

4. A method

Before we present a method, we describe how a tighter(better) upper
bound can be obtained. A tighter upper bound can be computed by
removing the so-called ‘unprofitable’ vertices; vertices that do not have
enough triangles.

Let V = {v1,v2,...,u} be the set of vertices of G. Compute ¢t =
diag(A3(G)/2) and obtain an upper bound x = m. If the criterion is
satisfied at a vertex, then extract a maximum clique and stop. If not,
remove all the vertices with triangles fewer than (m — 2)(m —1)/2 from
V and compute t corresponding to the new set of vertices. Repeat this
removal process until one of the following two cases occurs:

1. no further removal of vertices is possible; in this case, the number
of vertices(vertices with triangles greater than or equal to (m —
2)(m — 1)/2) is greater than or equal to m.

2. the number of vertices(vertices with triangles greater than or equal
to (m — 2)(m — 1)/2) becomes less than m.

If the first case occurs, then m is an upper bound for the size of a
maximum clique of G and we are done. If the second case occurs, then m
can not be the size of a maximum clique of G. Obviously then  =m—1
is a better upper bound. With m — 1 as a new tighter upper bound, one
can then repeat the above removal process on the original set V' to see if
even a tighter upper bound can be obtained; i.e., remove all the vertices
from V with triangles fewer than (m — 3)(m — 2)/2, etc.
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When computing a maximum clique or an upper bound, note that
any vertex v which is adjacent to all of the other vertices in V' can be
eliminated since w(G) = w(G \ {v}) + 1.

We now formulate a method which we call UBT (upper bound based
on triangles).

A Method(UBT):

1. Given G, compute t = diag(A43(G)/2), d, and an upper bound m.

2. Find the most tight upper bound y using the procedure described
above. Each time new t is computed, check if the criterion is satisfied,
and if a vertex satisfies the criterion, then extract a maximum clique
and stop.

3. Accept u as an upper bound for the size of a maximum clique of

G.

EXAMPLE 2. Consider the graph G’ given in Figure 2, which is

obtained by elimininating two edges (vs, vs) and (vs, v7) from G in Figure
1.

Figure 2. G' =G\ {(vs,vs) U (v3,v7)}

Computing the number of triangles and degrees, we get

t = (22236333)
d = (33446444).
As can be seen m = 4 becomes an upper bound, but no vertex satisfies

the criterion. Remove the vertices vy, vg, and vz from V and let V| =
{va,vs,v6,v7,v8}. Let H be the subgraph induced by V; and A(H) be
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the adjacency matrix. Computing the number of triangles corresponding
to the vertices in V7 gives

t; = diag(A*(H)/2)=(13122).

Since the second case has been occurred(only one vertex has triangles
greater than or equal to 3), it follows that m = 4 can not be the size
of a maximum clique in G'. We let m = 3 be the new tighter upper
bound and we repeat the above process on the original set V. However,
as can be observed no further removal of vertices is possible. Also, no
vertex in V satisfies the criterion. Thus, UBT yields i = 3 as the most
tight(best) upper bound for the size of a maximum clique of G’. Note
that w(G') = 3.

The next example considers a class of graphs, so-called triangle-free
graphs, on which UBT performs well.

EXAMPLE 3. Let G = (V, E) be an undirected graph with E # 0.
Suppose it turns out that t = diag(A3(G)/2) = 0. Then from Table 1,
an upper bound is either 0 or 1. Since E # (), one can then immedi-
ately conclude that w(G) = 2 and any edge can be a maximum clique of
G. Examples of such graphs include the Peterson graph, n-cycle graphs
Cp(n > 5), bipartite graphs, graphs generated by Mycielski’s construc-
tion(these graphs have large chromatic numbers), etc.

5. Discussions and remarks

Most of the upper bound techniques employed in the branch and
bound algorithms are based on the vertex coloring heuristics. Vertex
coloring heuristics works well on many instances, but there exist graphs
with no triangle but with large chromatic numbers. On such class of
graphs, vertex coloring heuristics usually yields ‘loose’ upper bounds.
For example, Grétzsch graph(constructed by the Myciekski’s method(see
[10], p.205)) is triangle-free and is of order 11. When applying the vertex
coloring heuristic(COLOR) stated in Section 1, we obtain y = 4 as an
upper bound(its chromatic number is also 4).

For UBT, each computation of A3(G)/2 requires O(n3) arithmetic
operations, which is rather expensive, and for dense graphs it often yields
loose upper bounds. However, on many instances such as graphs with
triangle-free(as demonstrated in the previous section), sparse graphs,
graphs with not much triangles, and so on, UBT performs well. Hence,
both techniques UBT and vertex coloring heuristics exhibit merits and
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demerits. It would be advantageous then to combine them together and
use it as an upper bound technique in a branch and bound algorithm.
This approach and the development of UBT into a practical method for
solving maximum clique problem are the subject of future study.

Finally, we note that a much better upper bound can also be com-
puted by considering each subset S; = Ng(v;) U{v;} and finding a maxi-
mum clique or an upper bound on each S; for: = 1,2, ..., n. In this case,
the largest maximum clique among all the maximum cliques computed
from the subproblems becomes a lower bound and the largest upper
bound among all the upper bounds computed from the subproblems be-
comes an upper bound for the size of the maximum clique of G. Then,
vertices corresponding to the upper bounds and the size of maximum
cliques not larger than the size of the largest maximum clique (the lower
bound) can be removed, and the removal process can be continued to
obtain a better lower and upper bounds.

References

[1] E. Balas and J. Xue, Weighted and unweighted mazimum clique algorithms with
upper bounds from fractional coloring, Algorithmica 15 (1996), 397-412.

[2] N. Biggs, Some Heuristics for Graph Coloring, in: R. Nelson, R.J. Wilson, (Eds.),
Graph Colourings, Longman, New York, (1980), pp. 87-96.

[3] A. Billionnet, An upper bound on the size of the largest cliques in a graph, Journal
of Graph Theory 5 (1981), 165-169.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, 1979.

[5] R. Garraghan and P. M. Pardalos, An exzact algorithm for the mazimum clique
problem, Operations Research Letters 9 (1990), 375-382.

[6] D. P. Geoffroy and D. P. Sumner, An upper bound on the size of a largest clique
wm a graph, Journal of Graph Theory, 2 (1978), 223-230.

[7] P. R. J. Ostergard, A fast algorithm for the mazimum clique problem, Discrete
Applied Mathematics 120 (2002), 197-207.

[8] P. M. Pardalos and G. P. Rodgers, A branch and bound algorithm for the mazi-
mum cliqgue problem, Comput. Oper. Res. 19 (1992), no. 5, 363-375.

[9] P. M. Pardalos and J. Xue, The mazimum clique problem, Journal of Global
Optimization 4 (1994), 301-328.

[10] D. B. West, Introduction to Graph Theory, Prentice Hall, 2001.
[11] D. R. Wood, An algorithm for finding a mazimum clique in a graph, Operations

Research Letters 21 (1997), 211-217.



754 Koonchan Kim

Department of Mathematics
Keimyung University
Daegu 704-701, Korea,
E-mail: kmkim@kmu.ac.kr



