Acknowledgement
The author is deeply grateful to the referees for many suggestions that led to significant improvements in the presentation.
References
- C. Bayer and J. Teichmann, The proof of Tchakaloff's Theorem, Proc. Amer. Math. Soc. 134 (2006), 3035-3040. https://doi.org/10.1090/S0002-9939-06-08249-9
- R. P. Boas, Jr., The Stieltjes moment problem for functions of bounded variation, Bull. Amer. Math. Soc. 45 (1939), no. 6, 399-404. https://doi.org/10.1090/S0002-9904-1939-06992-9
- T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach Science Publishers, New York-London-Paris, 1978.
- R. Curto and L. Fialkow, A. Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), no. 4, 603-635.
- R. Curto and L. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568, x+52 pp.
- R. Curto, L. Fialkow and H.M. Moller, The extremal truncated moment problem, Integral Equations Operator Theory 60 (2008), 177-200. https://doi.org/10.1007/s00020-008-1557-x
- L. Fernandez, T. Perez, and M. Pinar, Weak classical orthogonal polynomials in two variables, J. Comput. Appl. Math. 178 (2005), no.1-2, 191-203. https://doi.org/10.1016/j.cam.2004.08.010
- L. Fialkow, Truncated multivariable moment problems with finite variety, J. Operator Theory 60 (2008), 343-377.
- L. Fialkow, Solution of the truncated moment problem with variety y = x3, Trans. Amer. Math. Soc. 363 (2011), 3133-3165 https://doi.org/10.1090/S0002-9947-2011-05262-1
- G. P. Flessas, W. K. Burton, and R. R. Whitehead, On the moment problem for non-positive distributions, J. Phys. A 15 (1982), no. 10, 3119-3130. https://doi.org/10.1088/0305-4470/15/10/016
- R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 2013.
- D. W. Lee, Characterizations of distributional weights for weak orthogonal polynomials satisfying a second-order differential equation, Ann. Mat. Pura Appl. (4) 194 (2015), no.5, 1319-1348. https://doi.org/10.1007/s10231-014-0422-6
- K. Schmudgen, The Moment Problem, Springer, 2017. 225-234.
- S. Yoo, Sextic moment problems with a reducible cubic column relation, Integral Equations Operator Theory 88 (2017), no. 1, 45-63. https://doi.org/10.1007/s00020-017-2362-1