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UNIVARIATE TRUNCATED MOMENT PROBLEMS VIA

WEAKLY ORTHOGONAL POLYNOMIAL SEQUENCES

Seonguk Yoo

Abstract. Full univariate moment problems have been studied using

continued fractions, orthogonal polynomials, spectral measures, and so

on. On the other hand, the truncated moment problem has been mainly
studied through confirming the existence of the extension of the moment

matrix. A few articles on the multivariate moment problem implicitly pre-

sented about some results of this note, but we would like to rearrange the
important results for the existence of a representing measure of a moment

sequence. In addition, new techniques with orthogonal polynomials will be

introduced to expand the means of studying truncated moment problems.

1. Univariate Moment Problems

For an infinite real sequence β = {βn}n≥0, the full moment problem entails
finding a representing measure µ such that βn =

∫
xn dµ, n ≥ 0. According to

the location of the support of the measure, the problem is classified as:

supp µ ⊆ R (Hamburger moment problem)
supp µ ⊆ [a, b] (Hausdorff moment problem)
supp µ ⊆ [0,∞) (Stieltjes moment problem)

Given a finite real sequence {βn}mn=0, the truncated moment problem (in
short, TMP) entails finding necessary and sufficient conditions for the existence
of a positive Borel measure µ satisfying βn =

∫
xn dµ (0 ≤ n ≤ m).

Solutions to full and truncated moment promes are described based on the
Hankel matrices consisting of their moments:
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A(k) =



β0 β1 β2 · · · βk

β1 β2 β3 . .
.

βk+1

β2 β3 . .
.

. .
.

βk+2

... . .
.

. .
.

. .
. ...

βk βk+1 βk+2 · · · β2k


, B(k) =



β1 β2 β3 · · · βk+1

β2 β3 β4 . .
.

βk+2

β3 β4 . .
.

. .
.

βk+3

... . .
.

. .
.

. .
. ...

βk+1 βk+2 βk+3 · · · β2k+1


.

For the case of full moment problems, Hamburger proved that there is a
representing measure µ for {βn}n≥0 such that βn =

∫
xn dµ and supp µ ∈ R

if and only if A(k) ≥ 0 for all k ≥ 0. Moreover, Stieltjes verified that the
existence of a representing measure supported on [0,∞] is equivalent to the fact
that A(k) ≥ 0 and B(k) ≥ 0 for all k ≥ 0.

The j-th column of A(k) will be denoted by vj = (βj+ℓ)
k
ℓ=0, 0 ≤ j ≤ k, so

that we may write A(k) =
(
v0 · · · vk

)
.

The (Hankel) rank of β, denoted rank β, is now defined as follows: If A(k) is
nonsingular, rank β = k + 1; if A(k) is singular, rank β is the smallest integer
i, 1 ≤ i ≤ k, such that vi ∈ span (v0 · · · vi−1). Thus, if A(k) is singular, there
exists a unique (ϕ0, . . . , ϕi−1) such that vi = ϕi−1v0 + ϕi−2v1 + · · · + ϕ0vi−1.
The polynomial

gβ(t) = ti − ϕ0t
i−1 − · · · − ϕi−1t− ϕi−1 (1.1)

is called the generating function of β. This polynomial has a very important
role, because the zeros of this polynomial become the atoms of a representing
measure for a truncated moment sequence.

A key to prove the coming well-known solutions to TMP is:

Proposition 1.1. [4] Let β = (β0, . . . , β2k+1), β0 > 0. Assume A(k) is positive
definite. Then the generating function gβ has k+1 distinct real roots, x0, . . . , xk.
Thus the Vandermonde matrix W of the points x0, . . . , xk is invertible, and if
ρ =

(
ρ0 · · · ρk

)
= W−1v0, then ρj > 0 for 0 ≤ j ≤ k. Moreover, if µ =∑k

i=0 ρiδxi
, where δxi

is the point mass at xi, then βj =
∫
xj dµ, 0 ≤ j ≤ 2k+1.

Solutions to the truncated moment problem are introduced in detail by clas-
sifying several cases as follows:

Theorem 1.2. [4, Hamburger TMP, Existence of Odd Cases] Let β = (β0, . . . , β2k+1),
β0 > 0, and let r = rank β. The following are equivalent:

(i) There exists a (r-atomic) positive Borel measure µ satisfying βj =∫
xjdµ (j = 0, . . . , 2k + 1), and supp µ ⊆ R;

(ii) A(k) ≥ 0, vk+1 ∈ Ran A(k);
(iii) A(k+1) ≥ 0 for some choice of β2k+2 ∈ R, that is, A(k) has a positive

Hankel extension.

Theorem 1.3. [4, Hamburger TMP, Existence of Even Cases] Let β = (β0, . . . , β2k),
β0 > 0, and let r = rank β. The following are equivalent:

(i) There exists a (r-atomic) positive Borel measure µ satisfying βj =∫
xjdµ, (j = 0, . . . , 2k), and supp µ ⊆ R;
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(ii) A(k) ≥ 0, rank A(k) = rank β;
(iii) A(k) has a positive Hankel extension.

Theorem 1.4. [4, Stieltjes TMP, Existence of Odd Cases] Let β = (β0, . . . , β2k+1),
β0 > 0, and let r = rank β. The following are equivalent:

(i) There exists a positive Borel measure µ satisfying βj =
∫
xjdµ (j =

0, . . . , 2k + 1), and supp µ ⊆ [0,∞);
(ii) There exists a r-atomic representing measure µ for β satisfying supp µ ⊆

[0,∞);
(iii) A(k) ≥ 0, B(k) ≥ 0, and v(k + 1, k) = (βk+1 · · ·β2k+1)

T ∈ Ran A(k).

Theorem 1.5. [4, Stieltjes TMP, Existence of Even Cases] Let β = (β0, . . . , β2k),
β0 > 0, and let r = rank β. The following are equivalent:

(i) There exists a positive Borel measure µ satisfying βj =
∫
xjdµ (j =

0, . . . , 2k), and supp µ ⊆ [0,∞);
(ii) There exists a r-atomic representing measure µ for β satisfying supp µ ⊆

[0,∞);
(iii) A(k) ≥ 0, B(k − 1) ≥ 0, and v(k + 1, k − 1) = (βk+1 · · ·β2k)

T ∈
Ran B(k − 1).

Theorem 1.6. [4, Hausdorff TMP, Existence of Odd Cases]
Let β = (β0, . . . , β2k+1), β0 > 0, and let r = rank β, and let gβ as in (1.1).

There exists a positive Borel measure µ satisfying βj =
∫
xjdµ, (j = 0, . . . , 2k+

1) and supp µ ⊆ [a, b] if and only if A(k) ≥ 0, bA(k) ≥ B(k) ≥ aA(k), and
v(k + 1, k) = (βk+1 · · ·β2k+1)

T ∈ Ran A(k).

Theorem 1.7. [4, Hausdorff TMP, Existence of Even Cases]
Let β = (β0, . . . , β2k), β0 > 0, and let r = rank β. There exists a positive

Borel measure µ satisfying βj =
∫
xjdµ if and only if A(k) ≥ 0, bA(k) ≥

B(k) ≥ aA(k), and there exists β2k+1 such that v(k+1, k) = (βk+1 · · ·β2k+1)
T ∈

Ran A(k).

Let us illustrate how the above results are applied in the following example:

Example 1.8. Consider an example: β ≡ {β0, β1, β2, β3, β4, β5} = {1, 1, 2, 3, 5, 8},
which is the beginning part of the Fibonacci sequence. This is an odd case with
k = 2; thus,

A(2) =

 1 1 2
1 2 3
2 3 5

 and B(2) =

 1 2 3
2 3 5
3 5 8


Note that A(2) ≥ 0 but B(2) ̸≥ 0; thus, in the view of the Stieltjes moment
problem, this sequence has no solution. However, in the view of the Hausdorff
moment problem, it may have a representing measure on some [a, b], where
bA(2) ≥ B(2) ≥ aA(2). There are infinitely many desired a and b. Indeed,
A(2) has a unique column relation v2 = v0 +v1. Thus, the generating function
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gβ(t) = t2 − 1− t has the two roots (1±
√
5)/2 that are the atoms of the unique

representing measure µ. Solving the equation of the Vandermonde system(
1 1

(1−
√
5)/2 (1 +

√
5)/2

)(
ρ1
ρ2

)
=

(
β0

β1

)
=

(
1
1

)
,

we find the densities ρ1 = (5 −
√
5)/10 and ρ2 = (5 +

√
5)/10. We finally can

write the representing measure as ρ1δ(1−
√
5)/2 + ρ2δ(1+

√
5)/2 for β.

2. Orthogonal Polynomial Sequences

In this section we introduce powerful tools for the study of univariate mo-
ment problems: the Riesz functional and orthogonal polynomials. Readers are
referred to the references [3, 13] for a deeper treatment of the contents.

For a sequence, β = (βn)n≥0, define a Riesz functional Lβ acting on R[x] as

Lβ

[∑
cnx

n
]
=

∑
cnβn.

We say that Lβ is K-positive if

Lβ(p) ≥ 0 for all p ∈ R[x] : p|K ≥ 0. (2.1)

If the conditions, p|K ≥ 0 and p|K ̸≡ 0, imply Lβ(p) > 0, then Lβ is said
to be strictly K-positive. When K = R, we use the term positive instead of
K-positive. The K-positivity of Lβ is a necessary condition for β to admit
a K-representing measure. Conversely, the classical theorem of M. Riesz says
the K-positivity is also sufficient for the existence of K-measures and Haviland
generalized the result in Rn.

Theorem 2.1 (Riesz-Haviland’s Theorem). A sequence β = (βn)n≥0 admits
a representing measure supported in the closed set K ⊂ R if and only if Lβ is
K-positive.

From now on, we will collect well-known results about the Riesz functional
and orthogonal polynomials, and will see the role of positivity of a sequence.
A sequence {pn(x)}n≥0 is called an orthogonal polynomial sequence(in short,
OPS) with respect to a linear functional L if it satisfies that

deg (pn) = n and L[pmpn] = Knδmn (Kn ̸= 0) for all m,n ∈ N.

When Kn = 1 for all n ∈ N, such an OPS is called an orthonormal polyno-
mial sequence. There exists an explicit formula for the orthogonal polynomial
sequences (see [13, Proposition 5.3]).
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Theorem 2.2. For a sequence β = (βn)n≥0, let Lβ be the Riesz functional of
β. Then the monic OPS for Lβ is expressed as

pn(x) =
1

∆n−1(β)
det


β0 β1 · · · βn

β1 β2 · · · βn+1

...
...

. . .
...

βn−1 βn · · · β2n−1

1 x · · · xn

 , (2.2)

provided that ∆n(β) ̸= 0 for all n ∈ N, where ∆n(β) = detA(n).

The condition, ∆n(β) ̸= 0 for all n ∈ N, is a necessary and sufficient condition
for the existence of an OPS for Lβ ; such an Lβ is called quasi-definite and its
OPS has a 3-term recurrence relation as follows:

Theorem 2.3 ([3], Theorem 4.1, Chapter 1). Let Lβ be a quasi-definite Riesz
functional of a sequence β = {βn}n≥0 and let {pn(x)}n≥0 be the corresponding

monic OPS with respect to Lβ. Then there exist σ = {sn}n≥0 and τ = {tn}n≥1

with tn ̸= 0 for all n ≥ 0 such that

pn(x) = (x− sn)pn−1(x)− tnpn−2(x), n ≥ 1, (2.3)

where we assume p−1(x) = 0 and t1 is arbitrary. Furthermore, for each n ∈ N

sn =
Lβ [xp

2
n−1(x)]

Lβ [p2n−1(x)]
and tn+1 =

Lβ [p
2
n(x)]

Lβ [p2n−1(x)]
=

∆n−2(β)∆n(β)

(∆n−1(β))2
, (2.4)

where ∆−1(β) = 1. Moreover, if Lβ is strictly positive, then sn ∈ R and
tn+1 > 0 for all n ∈ N.

The converse of the proceeding result is referred to as the Favard’s Theorem:

Theorem 2.4 ([3], Theorem 4.4, Chapter 1). [Favard’s Theorem] Let σ =
{sn}n≥1 and τ = {tn}n≥1 be arbitrary sequences of complex numbers and let

{pn(x)}n≥0 be defined by the recurrence formula

p−1(x) = 0, p0(x) = 1, pn(x) = (x−sn)pn−1(x)− tn pn−2(x), n ≥ 1. (2.5)

Then, there exists a unique moment functional L such that

L[1] = t1, L[pm(x)pn(x)] = 0 for all m,n ≥ 0 with m ̸= n. (2.6)

Moreover, L is quasi-definite and {pn(x)}n≥0 is the corresponding monic OPS
if and only if tn ̸= 0 for all n ∈ N. In addition, L is strictly positive if and only
if sn ∈ R and tn > 0 for all n ∈ N.

What the last sentence of the above theorem means is that if the linear func-
tional is set to be the Riesz functional, the existence of such an OPS generated
by the conditions, sn ∈ R and tn > 0, n ∈ N, can be a solution to the full
moment problem.
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In the proof of this theorem, we may observe that

L[xkpn(x)] = 0, k = 0, 1, . . . , n− 1, (2.7)

L[xnpn(x)] = tn+1L[x
n−1pn−1(x)], n ≥ 1, (2.8)

L[p2n(x)] = L[xnpn(x)] = t1t2 · · · tn+1, n ≥ 0. (2.9)

If tN+1 = 0 for some (minimal) N , then L[p2n(x)] = 0 for n ≥ N , and hence
{pn(x)}n≥0 cannot be an OPS; but it still satisfies the primary orthogonality
condition, L[pm(x)pn(x)] = 0 form ̸= n. When this situation arises, {pn(x)}n≥0

is said to be weakly orthogonal polynomial sequence (in short, WOPS) of order
N , with respect to a linear functional L. This notion has received some study
as appeared in [7] and [12]; the following recurrence relations are known as a
Favard theorem for a WOPS.

Theorem 2.5. [12] A monic polynomial sequence {pn(x)}n≥0 is a WOPS of

finite order m if and only if {pn(x)}n≥0 satisfies recurrence relations:

pn+1(x) = (x− bn)pn(x)− cnpn−1(x), 0 ≤ n ≤ m (p0 = 1, p−1 = 0);

pm+2(x) = (x− bm+1)pm+1(x);

pn+1(x) = (x− bn)pn(x)− cnpn−1(x) +

n−2∑
k=m+1

dkn pk(x), n ≥ m+ 1,

where bn, cn, and dkn are some constants with cn ̸= 0, 1 ≤ n ≤ m.

Example 2.6. Consider a sequence β =
(
2n+3n

2

)
n≥0

with its Riesz functional

and we can see that

p0(x) = 1, p1(x) = x− 5

2
, p2(x) = x2 − 5x+ 6,

pn(x) = xn−2(x2 − 5x+ 6), n ≥ 3;

t1 = 1, t2 =
1

4
, t3 = t4 = · · · = 0.

Thus, {pn(x)}n≥0 is a WOPS of order 2.

From now on, we will focus on truncated moment sequences, and it can be
seen that these definitions of OPS and WOPS apply equally well up to certain
degrees; we may have an OPS or WOPS up to degree k for both cases of
β = (β0, . . . , β2k) or β = (β0, . . . , β2k+1). Here is a formal definition:

Definition 1. For finite sequences β = (β0, . . . , β2k) or β = (β0, . . . , β2k+1), let
Lβ be the Riesz functional of β.

(i) When ∆n(β) ̸= 0 for n = 0, 1, . . . , k, we call {pn(x)}kn=0 given by (2.2)
an orthogonal polynomial sequence (in short OPS) for β.

(ii) If ∆n(β) ̸= 0 for n = 0, 1, . . . , r − 1(≤ k − 1) and ∆n(β) = 0 for
n = r, r+1, . . . , k, and if Lβ

[
xipr(x)

]
= 0 for all i = 0, . . . , 2k−r, where

{pn(x)}rn=0 given by (2.2), then we call
{
p0(x), . . . , pr(x), xpr(x), x

2pr(x), . . . , x
k−rpr(x)

}
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a weak orthogonal polynomial sequence (in short WOPS) of order r for
β.

We may observe that if β = (β0, . . . , β2k) or β = (β0, . . . , β2k+1) admits an
OPS, then the Riesz functional Lβ of β satisfies

Lβ [pm(x)pn(x)] = 0, m ̸= n, m, n ≤ k,

Lβ [p
2
n(x)] ̸= 0, n = 0, 1, . . . , k.

On the other hand, if β = (β0, . . . , β2k) or β = (β0, . . . , β2k+1) admits an WOPS
of order r, then

Lβ [pm(x)pn(x)] = 0, m ̸= n; m, n ≤ r ≤ k − 1,

Lβ [p
2
n(x)] ̸= 0, n = 0, 1, . . . , r − 1,

Lβ [p
2
n(x)] = 0, n = r, r + 1, . . . , k.

It can be seen from the discussion so far that the definition of an OPS or
WOPS for a finite sequence is compatible with the case of an infinite sequence.

Example 2.7. The corresponding Hankel matrix of a turncated moment se-
quence β = (1, 1, 2, 3, t) is

A(2) =

1 1 2
1 2 3
2 3 t

 .

If t ̸= 5, then P =
{
1,−x+ 1, x2 − x− 1

}
is an OPS for β; on the other hand,

if t = 5, then P bocomes a WOPS for β.

Example 2.8. For a turncated moment sequence β = (1, 1, 1, s, t), the corre-
sponding Hankel matrix is

A(2) =

1 1 1
1 1 s
1 s t

 .

In this case, ∆1(β) = 0 and ∆2(β) = −(−1 + s)2; we may take p0(x) = 1 and
p1(x) = −x+ 1. Then Lβ

[
x2p1(x)

]
= s− 1 and Lβ

[
x3p1(x)

]
= t− s. If s ̸= 1

or s ̸= t, then β cannot have a WOPS.

For β = (β0, . . . , β2k) or β = (β0, . . . , β2k+1), let r = rank β. When
the columns of A(k) are labeled as 1, X,X2, . . . , Xk and A(k) is singular, let
r = min

{
i : Xi ∈ ⟨1, X,X2, . . . , Xi−1⟩

}
(1 ≤ r ≤ k); that is, there exist real

numbers a0, a1, . . . , ar−1 such that Xr = a01 + a1X + · · · + ar−1X
r−1. In the

case where β satisfies

Xr+s = a0X
s + a1X

s+1 + · · ·+ ar−1X
r+s−1 (0 ≤ s ≤ k − r),

we say that β is recursively generated.
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If β is recursively generated, and if the first column relation in A(k) is written
as p(X) = 0, then we set V (β) ≡ Z(p) = {x ∈ R : p(x) = 0}, which is called
the algebraic variety of β.

In the sequel, p̂ denotes the cofficient vector of the polynomial p and let
Pn = {p ∈ R[x] : deg p ≤ n}. Since A(k) is a real symmetric matrix, we can
define the sesquilinear form as follows:

⟨A(k)p̂, q̂⟩ = Lβ [pq] , p, q ∈ Pk.

Recall that in the presence of a (positive) representing measure µ for a positive
β, Proposition 3.1 in [5] states that

p̂ ∈ kerA(k) ⇐⇒ p(X) = 0 ⇐⇒ supp µ ⊆ Z(p).

This result provides an evidence that where the atoms of µ lie for a singularA(k);
that is, the algebraic variety of A(k) must contain the support of a representing
measure.

We now recall well-known important necessary conditions for the existence
of a representing measure for β [6]:

(Weak Consistency) p ∈ Pn, p|V (β) ≡ 0 =⇒ Lβ(p) = 0.
(Consistency) p ∈ P2n, p|V (β) ≡ 0 =⇒ Lβ(p) = 0.

It is obvious that the following holds:

β consistent =⇒ β weakly consistent =⇒ β recursively generated.

We will see later that there is not much difference between the above three
concepts for univariate moment problems. However, as the examples in [6] show,
this is not the case for multivariate moment problems.

As can be seen in the below result, consistency of a moment sequence guar-
antees the existence of an interpolating (or signed) measure.

Lemma 2.9. ([6, Lemma 2.3]) Let W ⊆ R. If L : P2n → R is a linear
functional, then the following statements are equivalent:

(i) There exist α1, . . . , αℓ ∈ R and there exist w1, . . . ,wℓ ∈ W such that
for all p ∈ P2n

L(p) =

ℓ∑
k=1

αkp(wk). (2.10)

(ii) If p ∈ P2n and p|W ≡ 0, then L(p) = 0.

If L is the Riesz functional of the moment sequence β, then Lemma 2.9(ii) is

just as consistency of β and
∑ℓ

k=1 αkδwk
is an interpolating measure for β.

Before we have our main result, note the following key tool; a column Xr in
A(k) is linearly dependent if and only if there are some real numbers a0, a1, . . . , ar−1

such that

Lβ

[
xi(xr − a0 − a1x− · · · − ar−1x

r−1)
]
= 0, i = 0, . . . , k.
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There is an interesting class of moment sequences called extremal, which are
cases where rank A(k) = card V (β). One relevant and important result is the
following:

Theorem 2.10. [6, Theorem 1.3] For an extremal β = (β0, . . . , β2k), the fol-
lowing are equivalent:

(i) β has a representing measure;
(ii) β has a unique representing measure, which is rank β-atomic;
(iii) A(k) is positive semidefinite and β is consistent.

Now we are about to look at the main results.

Theorem 2.11. β = (β0, . . . , β2k) or β = (β0, . . . , β2k+1) is recursively gener-
ated if and only if β admits a WOPS.

Proof. (⇐=) When β admits a WOPS of order r, we may write the sequence
as

{
p0(x), . . . , pr(x), xpr(x), x

2pr(x), . . . , x
k−rpr(x)

}
.

We can actually find a column relation pr(X) = 0 in A(k). In details, since
∆r(β) = 0, A(r) has a column relation, which can be written as

Xr
r = a01r + a1Xr + · · ·+ ar−1X

r−1
r (2.11)

for some real numbers a0, a1, . . . , ar−1, where X
i
j denotes the (i+1)-th columns

in A(r). We can readily see that pr(x) = xr −
(
a0 + a1x+ · · ·+ ar−1x

r−1
)
. By

the weak orthogonality, we also get that Lβ

[
xipr(x)

]
= 0 for all i = 0, . . . , 2k−r,

which shows that A(k) has the column relationXr = a01+a1X+· · ·+ar−1X
r−1;

equivalently, pr(X) = 0. Furthermore, it is possible to proceed to the argument:

Xr+s = a0X
s + a1Xr+1 + · · ·+ ar−1X

r+s−1
r , s = 0, 1, . . . , k − r

⇐⇒ Lβ

[
xipr(x)

]
= 0, i = 0, . . . , 2k − r. (2.12)

Thus, β is recursively generated.
(=⇒) Suppose β is recursively generated and apply (2.12) again. Then one

can easily complete the proof.
□

Combining all the results so far, the following main results are presented.

Theorem 2.12. Let β = (β0, . . . , β2k) with β0 > 0, and let r = rank β ≤ k;
that is, A(k) is singular. The following are equivalent:

(i) There exists a unique r-atomic positive Borel measure µ satisfying βj =∫
xjdµ (j = 0, . . . , 2k), and supp µ ⊆ R;

(ii) A(k) ≥ 0 and β admits a WOPS;
(iii) A(k) ≥ 0 and β is recursively generated;
(iv) A(k) ≥ 0 and β is weakly consistent;
(v) A(k) ≥ 0 and β is consistent.
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Proof. The implications (iii) =⇒ (iv) =⇒ (v) are immediate; (ii) ⇐⇒ (iii) is
given by Theorem 2.11 and (i) =⇒ (iii) can be shown by Theorem 1.3.

It remains to prove that (v) =⇒ (i). If we assum that (v) is true, then β
is extremal and so, by Theorem 2.10, it admits a unique r-atomic representing
measure. This complets the proof. □

Theorem 2.13. Let β = (β0, . . . , β2k) with β0 > 0. The following are equiva-
lent:

(i) There exists a (k+ 1)-atomic positive Borel measure µ satisfying βj =∫
xjdµ (j = 0, . . . , 2k), and supp µ ⊆ R;

(ii) A(k) is positive definite;
(iii) A(k) is positive definite and β admits an OPS.

Proof. The equivalence of (i) and (ii) is obvious, and the implication (iii) =⇒
(ii) is obtained by Theorem 1.3. It suffice to prove that (i) =⇒ (iii). If β admits
a (k+1)-atomic positive Borel measure, then A(k) is positive semidefinite. The
nested determinant test for A(k) guarantees that ∆n(β) ̸= 0 for n = 0, . . . , k.
Thus, β admits an OPS. □

Theorem 2.14. Let β = (β0, . . . , β2k, β2k+1) with β0 > 0. Suppose A(k) > 0
and assume β2k+2 is a real number to make A(k + 1) singular. The following
are equivalent:

(i) There exists a unique k-atomic positive Borel measure µ satisfying βj =∫
xjdµ (j = 0, . . . , 2k + 2), and supp µ ⊆ R;

(ii) β̃ = (β0, . . . , β2k+1, β2k+2) admits a WOPS;

(iii) β̃ is recursively generated.

Proof. First of all, it is easy to know that the new moment β2k+2 in the hy-
pothesis always exists due to the basic property of the determinant of matrices.
Applying Theorem 1.2 and 2.11, we can complete the proof.

□

Theorem 2.15. Let β = (β0, . . . , β2k, β2k+1) with β0 > 0. Suppose A(k) > 0
and assume β2k+2 is a real number to make detA(k+1) positive. The following
are equivalent:

(i) There exists a (k+ 2)-atomic positive Borel measure µ satisfying βj =∫
xjdµ (j = 0, . . . , 2k + 2), and supp µ ⊆ R;

(ii) β̃ = (β0, . . . , β2k+1, β2k+2) admits an OPS;

Proof. The equivalence can be obtained from Theorem 2.13 and 2.11.
□
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Example 2.16. For a turncated moment sequence β = (1, 1, 2, 3, 6, 7), the cor-
responding Hankel matrix is

A(3) =


1 1 2 3
1 2 3 6
2 3 6 7
3 6 7 β6

 .

Note that A(2) is positive definite. If β6 = 22, then A(3) is singular and it

follows from Theorem 2.14 that β̃ = (1, 1, 2, 3, 6, 7, 22) has a unique 3-atomic
representing measure. The set P =

{
1, x− 1, x2 − x− 1, x3 + 2x2 − 5x− 2

}
is

a WOPS for β.
On the other hand, if β6 > 22, then A(3) is positive definite and we conclude

from Theorem 2.15 that β̃ = (1, 1, 2, 3, 6, 7, β6) has a 4-atomic representing mea-

sure. It is different from the case above so that P is now an OPS for β̃. Lastly,
we conclude that β admits infinitely many representing measures.

It is well-known that the most important solution to a multivariate moment
problem is the existence of a flat tension (rank-preserving moment matrix ex-
tension) for a given moment sequence. Most information for solving truncated
moment problems was obtained by observing the polynomials appearing from
the column dependence relations in the moment matrix. The main result of
this note can be interpreted as confirming the existence of a positive expansion
of the moment matrix using weakly orthogonal polynomials based on moments.
For lower degree moment problems, building positive moment matrix extensions
is not difficult; but as the degree increases (in other words, when the given mo-
ment sequence becomes longer), it is highly nontrivial to determine whether
an extension actually exists due to the increment of parameters. Since the
method using weakly orthogonal polynomials is expected to be a new approach
for multivariate moment problems, it should be a valuable topic for the future
research.
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