TABLE 1. ρ(B-1 C) and ρ($\tilde{B}^{-1}\tilde{C}$) with α = 2/3 and ω = 1.1 for Example 5.1
TABLE 2. ρ(B-1C) and ρ($\tilde{B}^{-1}\tilde{C}$) with α = 2/3 and ω = 0.5 for Example 5.1
TABLE 3. IT, CPU and ρ with different n and ω for Example 5.2
TABLE 4
References
- B. H. Ahn, Solution of nonsymmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl. 33 (1981), no. 2, 175-185. https://doi.org/10.1007/BF00935545
- O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
- Z.-Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl. 17 (2010), no. 6, 917-933. https://doi.org/10.1002/nla.680
- Z.-Z. Bai and D. J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems, Int. J. Comput. Math. 63 (1997), no. 3-4, 309-326. https://doi.org/10.1080/00207169708804569
- A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1992.
- P.-F. Dai, J.-C. Lia, Y.-T. Lic, and J. Baia, A general preconditioner for linear complementarity problem with an M-matrix, J. Comput. Appl. Math. 317 (2017), 100-112. https://doi.org/10.1016/j.cam.2016.11.034
- J.-L. Dong and M.-Q. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numer. Linear Algebra Appl. 16 (2009), no. 2, 129-143. https://doi.org/10.1002/nla.609
- M. Dehghan and M. Hajarian, Convergence of SSOR methods for linear complementarity problems, Oper. Res. Lett. 37 (2009), no. 3, 219-223. https://doi.org/10.1016/j.orl.2009.01.013
- M. Dehghan and M. Hajarian, Improving preconditioned SOR-type iterative methods for L-matrices, Int. J. Numer. Methods Biomed. Eng. 27 (2011), no. 5, 774-784. https://doi.org/10.1002/cnm.1332
- M. C. Ferris and Y. Zhang, Foreword: Special issue on mathematical programming in biology and medicine, Math. Program. 101 (2004), no. 2, Ser. B, 297-299. https://doi.org/10.1007/s10107-004-0525-8
- A. D. Gunawardena, S. K. Jain, and L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154/156 (1991), 123-143. https://doi.org/10.1016/0024-3795(91)90376-8
- A. Hadjidimos, D. Noutsos, and M. Tzoumas, More on modifications and improvements of classical iterative schemes for M-matrices, Linear Algebra Appl. 364 (2003), 253-279. https://doi.org/10.1016/S0024-3795(02)00570-0
- A. Hadjidimos and M. Tzoumas, On the solution of the linear complementarity problem by the generalized accelerated overrelaxation iterative method, J. Optim. Theory Appl. 165 (2015), no. 2, 545-562. https://doi.org/10.1007/s10957-014-0589-4
- A. Hadjidimos and M. Tzoumas, The solution of the linear complementarity problem by the matrix analogue of the accelerated overrelaxation iterative method, Numer. Algorithms 73 (2016), no. 3, 665-684. https://doi.org/10.1007/s11075-016-0112-0
- N. W. Kappel and L. T. Watson, Iterative algorithms for the linear complementarity problems, I, Int. J.Comput. Math. 19 (1986), no. 3-4, 273-297. https://doi.org/10.1080/00207168608803522
- T. Kohno, H. Kotakemori, and H. Niki, Improving the modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997), 113-123. https://doi.org/10.1016/S0024-3795(97)00063-3
- D. Li, J. Zeng, and Z. Zhang, Gaussian pivoting method for solving linear complementarity problem, Appl. Math. J. Chinese Univ. Ser. B 12 (1997), no. 4, 419-426. https://doi.org/10.1007/s11766-997-0044-5
- W. Li, The convergence of the modified Gauss-Seidel methods for consistent linear systems, J. Comput. Appl. Math. 154 (2003), no. 1, 97-105. https://doi.org/10.1016/S0377-0427(02)00812-9
- W. Li and W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices, Linear Algebra Appl. 317 (2000), no. 1-3, 227-240. https://doi.org/10.1016/S0024-3795(00)00140-3
- Y. Li and P. Dai, Generalized AOR methods for linear complementarity problem, Appl. Math. Comput. 188 (2007), no. 1, 7-18. https://doi.org/10.1016/j.amc.2006.09.067
- K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Sigma Series in Applied Mathematics, 3, Heldermann Verlag, Berlin, 1988.
- M. Neumann and R. J. Plemmons, Convergence of parallel multisplitting iterative methods for M-matrices, Linear Algebra Appl. 88/89 (1987), 559-573. https://doi.org/10.1016/0024-3795(87)90125-X
- R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962.
- L. Wang and Y. Song, Preconditioned AOR iterative methods for M-matrices, J. Comput. Appl. Math. 226 (2009), no. 1, 114-124. https://doi.org/10.1016/j.cam.2008.05.022
- M. T. Yahyapour and S. A. Edalatpanah, Modified SSOR Modelling for Linear Complementarity Problems, Turkish Journal of Analysis and Number Theory. 2 (2014), no. 2, 47-52. https://doi.org/10.12691/tjant-2-2-4
- L.-L. Zhang and Z.-R. Ren, Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems, Appl. Math. Lett. 26 (2013), no. 6, 638-642. https://doi.org/10.1016/j.aml.2013.01.001
- N. Zheng and J.-F. Yin, Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem, Numer. Algorithms 64 (2013), no. 2, 245-262. https://doi.org/10.1007/s11075-012-9664-9