• 제목/요약/키워드: Mann iteration

검색결과 48건 처리시간 0.021초

INERTIAL PICARD NORMAL S-ITERATION PROCESS

  • Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.995-1009
    • /
    • 2021
  • Many iterative algorithms like that Picard, Mann, Ishikawa and S-iteration are very useful to elucidate the fixed point problems of a nonlinear operators in various topological spaces. The recent trend for elucidate the fixed point via inertial iterative algorithm, in which next iterative depends on more than one previous terms. The purpose of the paper is to establish convergence theorems of new inertial Picard normal S-iteration algorithm for nonexpansive mapping in Hilbert spaces. The comparison of convergence of InerNSP and InerPNSP is done with InerSP (introduced by Phon-on et al. [25]) and MSP (introduced by Suparatulatorn et al. [27]) via numerical example.

Fixed point iterations for quasi-contractive maps in uniformly smooth banach spaces

  • Chidume, C.E.;Osilike, M.O.
    • 대한수학회보
    • /
    • 제30권2호
    • /
    • pp.201-212
    • /
    • 1993
  • It is our purpose in this paper to first establish an inequality in real uniformly smooth Banach spaces with modulus of smoothness of power type q > 1 that generalizes a well known Hilbert space inequality. Using our inequality, we shall then extend the above result of Qihou [15] on the Ishikawa iteration process from Hilbert spaces to these much more general Banach spaces. Furthermore, we shall prove that the Mann iteration process converges strongly to the unique fixed point of a quasi-contractive map in this general setting. No compactness assumption on K is required in our theorems.

  • PDF

STRONG AND Δ-CONVERGENCE OF A FASTER ITERATION PROCESS IN HYPERBOLIC SPACE

  • AKBULUT, SEZGIN;GUNDUZ, BIROL
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.209-219
    • /
    • 2015
  • In this article, we first give metric version of an iteration scheme of Agarwal et al. [1] and approximate fixed points of two finite families of nonexpansive mappings in hyperbolic spaces through this iteration scheme which is independent of but faster than Mann and Ishikawa scheme. Also we consider case of three finite families of nonexpansive mappings. But, we need an extra condition to get convergence. Our convergence theorems generalize and refine many know results in the current literature.

MODIFIED KRASNOSELSKI-MANN ITERATIONS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Naidu, S.V.R.;Sangago, Mengistu-Goa
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.753-762
    • /
    • 2010
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K $\rightarrow$ K be a nonexpansive mapping with a nonempty fixed point set Fix(T). Let f : K $\rightarrow$ K be a contraction mapping. Let {$\alpha_n$} and {$\beta_n$} be sequences in (0, 1) such that $\lim_{x{\rightarrow}0}{\alpha}_n=0$, (0.1) $\sum_{n=0}^{\infty}\;{\alpha}_n=+{\infty}$, (0.2) 0 < a ${\leq}\;{\beta}_n\;{\leq}$ b < 1 for all $n\;{\geq}\;0$. (0.3) Then it is proved that the modified Krasnoselski-Mann iterative sequence {$x_n$} given by {$x_0\;{\in}\;K$, $y_n\;=\;{\alpha}_{n}f(x_n)+(1-\alpha_n)x_n$, $n\;{\geq}\;0$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, $n\;{\geq}\;0$, (0.4) converges strongly to a point p $\in$ Fix(T} which satisfies the variational inequality

    $\leq$ 0, z $\in$ Fix(T). (0.5) This result improves and extends the corresponding results of Yao et al[Y.Yao, H. Zhou, Y. C. Liou, Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings, J Appl Math Com-put (2009)29:383-389.

STRONG CONVERGENCE OF MONOTONE CQ ITERATIVE PROCESS FOR ASYMPTOTICALLY STRICT PSEUDO-CONTRACTIVE MAPPINGS

  • Zhang, Hong;Su, Yongfu;Li, Mengqin
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.763-771
    • /
    • 2009
  • T.H. Kim, H.K. Xu, [Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal.(2007),doi:l0.l016/j.na.2007.02.029.] proved the strong convergence for asymptotically strict pseudo-contractions by the classical CQ iterative method. In this paper, we apply the monotone CQ iterative method to modify the classical CQ iterative method of T.H. Kim, H.K. Xu, and to obtain the strong convergence theorems for asymptotically strict pseudo-contractions. In the proved process of this paper, Cauchy sequences method is used, so we complete the proof without using the demi-closedness principle, Opial's condition or others about weak topological technologies. In addition, we use a ingenious technology to avoid defining that F(T) is bounded. On the other hand, we relax the restriction on the control sequence of iterative scheme.

  • PDF

WEAK AND STRONG CONVERGENCE FOR QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Kim, Gang-Eun
    • 대한수학회보
    • /
    • 제49권4호
    • /
    • pp.799-813
    • /
    • 2012
  • In this paper, we first show that the iteration {$x_n$} defined by $x_{n+1}=P((1-{\alpha}_n)x_n +{\alpha}_nTP[{\beta}_nTx_n+(1-{\beta}_n)x_n])$ converges strongly to some fixed point of T when E is a real uniformly convex Banach space and T is a quasi-nonexpansive non-self mapping satisfying Condition A, which generalizes the result due to Shahzad [11]. Next, we show the strong convergence of the Mann iteration process with errors when E is a real uniformly convex Banach space and T is a quasi-nonexpansive self-mapping satisfying Condition A, which generalizes the result due to Senter-Dotson [10]. Finally, we show that the iteration {$x_n$} defined by $x_{n+1}={\alpha}_nSx_n+{\beta}_nT[{\alpha}^{\prime}_nSx_n+{\beta}^{\prime}_nTx_n+{\gamma}^{\prime}_n{\upsilon}_n]+{\gamma}_nu_n$ converges strongly to a common fixed point of T and S when E is a real uniformly convex Banach space and T, S are two quasi-nonexpansive self-mappings satisfying Condition D, which generalizes the result due to Ghosh-Debnath [3].

뉴턴 반복을 이용한 AD-MUSIC 알고리즘 성능향상 (Performance Improvement of AD-MUSIC Algorithm Using Newton Iteration)

  • 백지웅;김종만;이준호
    • 한국전자파학회논문지
    • /
    • 제28권11호
    • /
    • pp.880-885
    • /
    • 2017
  • 기존에 제안된 AD-MUSIC 알고리즘을 이용하여 2차원 탐색 없이 1차원 탐색을 반복함으로써 DOD/DOA 추정이 가능하다. 본 논문에서는 계산량을 더욱 감소하기 위해 1차원 탐색에 Newton 기반 기법을 적용한다. 본 논문은 바이스태틱 MIMO 레이다 시스템의 수신신호 모델링과 AD-MUSIC의 유도과정을 보이고, 뉴턴 반복 기법을 AD-MUSIC에 적용한다. 추정 시, 기존의 AD-MUSIC 알고리즘의 성능과 계산량이 탐색 간격에 영향을 받는 것에 반해, AD-MUSIC의 성능과 뉴턴기법을 적용하는 본 논문의 방법인 경우, 탐색 간격에 관계없이 우수한 성능을 보이고, 계산량 또한 감소하는 효과를 보인다는 것을 시뮬레이션을 통해 보인다.

HYBRID MONOTONE PROJECTION ALGORITHMS FOR ASYMPTOTICALLY QUASI-PSEUDOCONTRACTIVE MAPPINGS

  • Wu, Changqun;Cho, Sun-Young
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.415-423
    • /
    • 2009
  • In this paper, we consider the hybrid monotone projection algorithm for asymptotically quasi-pseudocontractive mappings. A strong convergence theorem is established in the framework of Hilbert spaces. Our results mainly improve the corresponding results announced by [H. Zhou, Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009) 3140-3145] and also include Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006) 1140-1152; Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal. 68 (2008) 2828-2836] as special cases.

MANN-ITERATION PROCESS TO THE SOLUTION OF $y=x+Tx$ FOR AN ACDRETIVE OPERATOR T IN SOME BANACH SPACES

  • Park, Jong-An
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.819-823
    • /
    • 1994
  • If H is a Hilbert space, then an operator $T : D(T) \subset H \to H$ is said to be monotone if $$ (x-y, Tx-Ty) \geq 0$$ for any x, y in D(T). Many authors [1], [4] obtained the existence theorem for the equation $y = x + Tx$ for x, given an element y in H and a monotone operator T. On the other hand some iterative methods were applied to the approximations for the solution of the above equation [6], [8]. For example Bruck [2] obtained the iterative solution of the above equation with an explicit error estimate as follows.

  • PDF